|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy-DA
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: validation
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8090909090909091
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy-DA
|
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.6974
|
|
- Accuracy: 0.8091
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 128
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 40
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 1.5987 | 1.0 | 23 | 1.5683 | 0.4909 |
|
|
| 1.4137 | 2.0 | 46 | 1.2639 | 0.4909 |
|
|
| 1.1988 | 3.0 | 69 | 0.8726 | 0.7636 |
|
|
| 0.8533 | 4.0 | 92 | 0.6361 | 0.7545 |
|
|
| 0.8042 | 5.0 | 115 | 0.5985 | 0.7545 |
|
|
| 0.7349 | 6.0 | 138 | 0.5943 | 0.7545 |
|
|
| 0.7003 | 7.0 | 161 | 0.5178 | 0.7636 |
|
|
| 0.6641 | 8.0 | 184 | 0.5058 | 0.7545 |
|
|
| 0.641 | 9.0 | 207 | 0.5092 | 0.7909 |
|
|
| 0.6571 | 10.0 | 230 | 0.5319 | 0.7636 |
|
|
| 0.6522 | 11.0 | 253 | 0.5726 | 0.7909 |
|
|
| 0.5659 | 12.0 | 276 | 0.5490 | 0.7727 |
|
|
| 0.5511 | 13.0 | 299 | 0.5465 | 0.8 |
|
|
| 0.5435 | 14.0 | 322 | 0.5728 | 0.7909 |
|
|
| 0.5259 | 15.0 | 345 | 0.6047 | 0.7636 |
|
|
| 0.5496 | 16.0 | 368 | 0.6479 | 0.7818 |
|
|
| 0.543 | 17.0 | 391 | 0.6040 | 0.7727 |
|
|
| 0.4646 | 18.0 | 414 | 0.6269 | 0.7818 |
|
|
| 0.4867 | 19.0 | 437 | 0.6535 | 0.7909 |
|
|
| 0.4357 | 20.0 | 460 | 0.6991 | 0.7727 |
|
|
| 0.4392 | 21.0 | 483 | 0.7127 | 0.7636 |
|
|
| 0.4403 | 22.0 | 506 | 0.6974 | 0.8091 |
|
|
| 0.4358 | 23.0 | 529 | 0.6883 | 0.7818 |
|
|
| 0.4094 | 24.0 | 552 | 0.6768 | 0.8 |
|
|
| 0.3913 | 25.0 | 575 | 0.7270 | 0.7636 |
|
|
| 0.3686 | 26.0 | 598 | 0.7104 | 0.7727 |
|
|
| 0.3679 | 27.0 | 621 | 0.7115 | 0.7818 |
|
|
| 0.378 | 28.0 | 644 | 0.8020 | 0.8091 |
|
|
| 0.3583 | 29.0 | 667 | 0.7524 | 0.7909 |
|
|
| 0.3299 | 30.0 | 690 | 0.7783 | 0.7909 |
|
|
| 0.3672 | 31.0 | 713 | 0.8193 | 0.7909 |
|
|
| 0.3567 | 32.0 | 736 | 0.8095 | 0.7909 |
|
|
| 0.3585 | 33.0 | 759 | 0.8324 | 0.7909 |
|
|
| 0.3191 | 34.0 | 782 | 0.8042 | 0.7909 |
|
|
| 0.3144 | 35.0 | 805 | 0.8189 | 0.7909 |
|
|
| 0.3452 | 36.0 | 828 | 0.8377 | 0.7909 |
|
|
| 0.3263 | 37.0 | 851 | 0.8204 | 0.7909 |
|
|
| 0.2939 | 38.0 | 874 | 0.8103 | 0.7909 |
|
|
| 0.3152 | 39.0 | 897 | 0.8184 | 0.7818 |
|
|
| 0.2787 | 40.0 | 920 | 0.8241 | 0.7818 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|