Augusto777's picture
End of training
39ca2be verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-OT
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8225806451612904

swinv2-tiny-patch4-window8-256-OT

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6192
  • Accuracy: 0.8226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 8.8439 0.0806
8.7922 2.0 11 8.0016 0.0806
8.7922 2.91 16 6.0009 0.0806
6.5264 4.0 22 2.7431 0.0806
6.5264 4.91 27 1.3018 0.4516
2.16 6.0 33 1.2696 0.4516
2.16 6.91 38 1.2057 0.4516
1.2876 8.0 44 1.2157 0.4516
1.2876 8.91 49 1.2459 0.4516
1.2456 10.0 55 1.2110 0.4516
1.1901 10.91 60 1.1861 0.4516
1.1901 12.0 66 1.0847 0.4677
1.0665 12.91 71 1.0944 0.4677
1.0665 14.0 77 1.1854 0.4677
1.033 14.91 82 1.0252 0.5
1.033 16.0 88 1.2164 0.5161
1.0323 16.91 93 1.0643 0.5
1.0323 18.0 99 0.9802 0.6613
0.9329 18.91 104 0.9475 0.5968
0.8619 20.0 110 0.9115 0.6452
0.8619 20.91 115 0.8894 0.6452
0.8019 22.0 121 0.8276 0.6935
0.8019 22.91 126 0.8156 0.6774
0.7675 24.0 132 0.7928 0.6290
0.7675 24.91 137 0.7163 0.7419
0.6762 26.0 143 0.7388 0.6774
0.6762 26.91 148 0.6519 0.7581
0.6771 28.0 154 0.6710 0.7419
0.6771 28.91 159 0.6074 0.7581
0.6424 30.0 165 0.6729 0.7258
0.6139 30.91 170 0.5744 0.7903
0.6139 32.0 176 0.6192 0.8226
0.5713 32.91 181 0.6453 0.7903
0.5713 34.0 187 0.6392 0.7903
0.5462 34.91 192 0.5956 0.8226
0.5462 36.0 198 0.5893 0.8226
0.5393 36.36 200 0.5898 0.8226

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0