Augusto777's picture
End of training
30ff47f verified
|
raw
history blame
4.42 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-RD-aptos19
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.616822429906542

swinv2-tiny-patch4-window8-256-RD-aptos19

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6580
  • Accuracy: 0.6168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 4.5659 0.4112
4.5175 2.0 16 3.6471 0.4112
3.927 3.0 24 1.6286 0.4112
1.6081 4.0 32 0.6781 0.5888
0.7702 5.0 40 0.8357 0.5888
0.7702 6.0 48 0.6766 0.5888
0.7502 7.0 56 0.7522 0.4112
0.7266 8.0 64 0.6792 0.5888
0.6954 9.0 72 0.6881 0.5888
0.6808 10.0 80 0.6780 0.5888
0.6808 11.0 88 0.7130 0.5888
0.7068 12.0 96 0.6771 0.5888
0.6792 13.0 104 0.6779 0.5888
0.6841 14.0 112 0.6766 0.5888
0.6777 15.0 120 0.6861 0.5888
0.6777 16.0 128 0.6773 0.5888
0.6818 17.0 136 0.6806 0.5888
0.6747 18.0 144 0.6929 0.5888
0.6814 19.0 152 0.6767 0.5888
0.6714 20.0 160 0.6745 0.5888
0.6714 21.0 168 0.6852 0.5888
0.6765 22.0 176 0.6816 0.5514
0.6822 23.0 184 0.6983 0.5888
0.6816 24.0 192 0.6706 0.5888
0.6868 25.0 200 0.6982 0.5701
0.6868 26.0 208 0.6878 0.5701
0.6724 27.0 216 0.6785 0.5888
0.6613 28.0 224 0.6843 0.5888
0.6501 29.0 232 0.7126 0.5888
0.6566 30.0 240 0.6917 0.5701
0.6566 31.0 248 0.7020 0.5607
0.6583 32.0 256 0.6782 0.5888
0.6501 33.0 264 0.6647 0.5888
0.654 34.0 272 0.6603 0.5981
0.6604 35.0 280 0.6873 0.5794
0.6604 36.0 288 0.6591 0.5794
0.6456 37.0 296 0.6580 0.6168
0.6483 38.0 304 0.6702 0.5981
0.6151 39.0 312 0.6785 0.5981
0.6291 40.0 320 0.6806 0.5981

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0