|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: swinv2-tiny-patch4-window8-256-RD-aptos19
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: validation
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.6739130434782609
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# swinv2-tiny-patch4-window8-256-RD-aptos19
|
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 144573075075950992480149202324684800.0000
|
|
- Accuracy: 0.6739
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.00015
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 40
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-----------------------------------------:|:-----:|:----:|:-----------------------------------------:|:--------:|
|
|
| No log | 0.86 | 3 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| No log | 2.0 | 7 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 141735823463928302525633790371430400.0000 | 2.86 | 10 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 141735823463928302525633790371430400.0000 | 4.0 | 14 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 141735823463928302525633790371430400.0000 | 4.86 | 17 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 148386187888478135085935683952443392.0000 | 6.0 | 21 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 148386187888478135085935683952443392.0000 | 6.86 | 24 | 144573075075950992480149202324684800.0000 | 0.4783 |
|
|
| 148386187888478135085935683952443392.0000 | 8.0 | 28 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 166674646480500797315403436963921920.0000 | 8.86 | 31 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 166674646480500797315403436963921920.0000 | 10.0 | 35 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 166674646480500797315403436963921920.0000 | 10.86 | 38 | 144573075075950992480149202324684800.0000 | 0.4565 |
|
|
| 123031678471642034838718731348082688.0000 | 12.0 | 42 | 144573075075950992480149202324684800.0000 | 0.5217 |
|
|
| 123031678471642034838718731348082688.0000 | 12.86 | 45 | 144573075075950992480149202324684800.0000 | 0.6087 |
|
|
| 123031678471642034838718731348082688.0000 | 14.0 | 49 | 144573075075950992480149202324684800.0000 | 0.5435 |
|
|
| 160439944687765812243898756589682688.0000 | 14.86 | 52 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 160439944687765812243898756589682688.0000 | 16.0 | 56 | 144573075075950992480149202324684800.0000 | 0.5870 |
|
|
| 160439944687765812243898756589682688.0000 | 16.86 | 59 | 144573075075950992480149202324684800.0000 | 0.5652 |
|
|
| 151295747083019479456202288017702912.0000 | 18.0 | 63 | 144573075075950992480149202324684800.0000 | 0.6087 |
|
|
| 151295747083019479456202288017702912.0000 | 18.86 | 66 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
| 142151454404478133240649521934893056.0000 | 20.0 | 70 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 142151454404478133240649521934893056.0000 | 20.86 | 73 | 144573075075950992480149202324684800.0000 | 0.6739 |
|
|
| 142151454404478133240649521934893056.0000 | 22.0 | 77 | 144573075075950992480149202324684800.0000 | 0.6739 |
|
|
| 137163724661555136131785556085440512.0000 | 22.86 | 80 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
| 137163724661555136131785556085440512.0000 | 24.0 | 84 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
| 137163724661555136131785556085440512.0000 | 24.86 | 87 | 144573075075950992480149202324684800.0000 | 0.6739 |
|
|
| 137163692970290119358004074442129408.0000 | 26.0 | 91 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
| 137163692970290119358004074442129408.0000 | 26.86 | 94 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 137163692970290119358004074442129408.0000 | 28.0 | 98 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 155452183253577798361253309096919040.0000 | 28.86 | 101 | 144573075075950992480149202324684800.0000 | 0.6739 |
|
|
| 155452183253577798361253309096919040.0000 | 30.0 | 105 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 155452183253577798361253309096919040.0000 | 30.86 | 108 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 139657557841751617912436057366855680.0000 | 32.0 | 112 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 139657557841751617912436057366855680.0000 | 32.86 | 115 | 144573075075950992480149202324684800.0000 | 0.6522 |
|
|
| 139657557841751617912436057366855680.0000 | 34.0 | 119 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
| 141735791772663285751852308728119296.0000 | 34.29 | 120 | 144573075075950992480149202324684800.0000 | 0.6304 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|