π§ TextSummarizerForInventoryReport-T5
A T5-based text summarization model fine-tuned on inventory report data. This model generates concise summaries of detailed inventory-related texts, making it useful for warehouse management, stock reporting, and supply chain documentation.
β¨ Model Highlights
- π Based on t5-small from Hugging Face π€
- π Fine-tuned on structured inventory report data (report_text β summary_text)
- π Generates meaningful and human-readable summaries
- β‘ Supports maximum input length of 512 tokens and output length of 128 tokens
- π§ Built using Hugging Face Transformers and PyTorch
π§ Intended Uses
- β Inventory report summarization
- β Warehouse/logistics management automation
- β Business analytics and reporting dashboards
π« Limitations
- β Not optimized for very long reports (>512 tokens)
- π Trained primarily on English-language technical/business reports
- π§Ύ Performance may degrade on unstructured or noisy input text
- π€ Not designed for creative or narrative summarization
ποΈββοΈ Training Details
Attribute | Value |
---|---|
Base Model | t5-small |
Dataset | Custom inventory reports |
Max Input Tokens | 512 |
Max Output Tokens | 128 |
Epochs | 3 |
Batch Size | 2 |
Optimizer | AdamW |
Loss Function | CrossEntropyLosS(with -100 padding mask) |
Framework | PyTorch + Hugging Face Transformers |
Hardware | CUDA-enabled GPU |
π Usage
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
from datasets import Dataset
import torch
import torch.nn.functional as F
model_name = "AventIQ-AI/Text_Summarization_For_inventory_Report"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
def preprocess(example):
input_text = "summarize: " + example["full_text"]
input_enc = tokenizer(input_text, truncation=True, padding="max_length", max_length=512)
target_enc = tokenizer(example["summary"], truncation=True, padding="max_length", max_length=64)
input_enc["labels"] = target_enc["input_ids"]
return input_enc
# Generate summary
summary = summarize(long_text, model, tokenizer)
print("Summary:", summary)
Repository Structure
.
βββ model/ # Contains the quantized model files
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
βββ model.safensors/ # Fine Tuned Model
βββ README.md # Model documentation
π€ Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions, improvements, or want to adapt the model to new domains.