AmanSengar's picture
Update README.md
3ab0688 verified

🧠 TextSummarizerForInventoryReport-T5

A T5-based text summarization model fine-tuned on inventory report data. This model generates concise summaries of detailed inventory-related texts, making it useful for warehouse management, stock reporting, and supply chain documentation.

✨ Model Highlights

  • πŸ“Œ Based on t5-small from Hugging Face πŸ€—
  • πŸ” Fine-tuned on structured inventory report data (report_text β†’ summary_text)
  • πŸ“‹ Generates meaningful and human-readable summaries
  • ⚑ Supports maximum input length of 512 tokens and output length of 128 tokens
  • 🧠 Built using Hugging Face Transformers and PyTorch

🧠 Intended Uses

  • βœ… Inventory report summarization
  • βœ… Warehouse/logistics management automation
  • βœ… Business analytics and reporting dashboards

🚫 Limitations

  • ❌ Not optimized for very long reports (>512 tokens)
  • 🌍 Trained primarily on English-language technical/business reports
  • 🧾 Performance may degrade on unstructured or noisy input text
  • πŸ€” Not designed for creative or narrative summarization

πŸ‹οΈβ€β™‚οΈ Training Details

Attribute Value
Base Model t5-small
Dataset Custom inventory reports
Max Input Tokens 512
Max Output Tokens 128
Epochs 3
Batch Size 2
Optimizer AdamW
Loss Function CrossEntropyLosS(with -100 padding mask)
Framework PyTorch + Hugging Face Transformers
Hardware CUDA-enabled GPU

πŸš€ Usage


from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
from datasets import Dataset
import torch
import torch.nn.functional as F

model_name = "AventIQ-AI/Text_Summarization_For_inventory_Report"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

def preprocess(example):
    input_text = "summarize: " + example["full_text"]
    input_enc = tokenizer(input_text, truncation=True, padding="max_length", max_length=512)
    target_enc = tokenizer(example["summary"], truncation=True, padding="max_length", max_length=64)
    input_enc["labels"] = target_enc["input_ids"]
    return input_enc

# Generate summary
summary = summarize(long_text, model, tokenizer)
print("Summary:", summary)

Repository Structure

.
 β”œβ”€β”€ model/               # Contains the quantized model files
 β”œβ”€β”€ tokenizer_config/    # Tokenizer configuration and vocabulary files
 β”œβ”€β”€ model.safensors/     # Fine Tuned Model
 β”œβ”€β”€ README.md            # Model documentation
 

🀝 Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions, improvements, or want to adapt the model to new domains.