File size: 10,088 Bytes
c1bd349 f0f46c6 f9cf8ee de77494 2f52d85 6b9f7d9 7c9025d 6b9f7d9 7c9025d 057edcb 87bc456 7c9025d 2f52d85 6b9f7d9 057edcb 6b9f7d9 941acb1 00cbbb7 941acb1 6b9f7d9 95785af 6b9f7d9 e6568ef b9588ec 941acb1 6b9f7d9 95785af 057edcb f9cf8ee c4899d6 95785af c4899d6 f9cf8ee 057edcb 7c9025d de77494 7c9025d 6f6b819 de77494 7c9025d de77494 7c9025d de77494 f9cf8ee 7c9025d de77494 7c9025d 0c26b17 7c9025d ae88d52 7c9025d de77494 941acb1 7c9025d de77494 7c9025d 941acb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: apache-2.0
---
# Introduction
CSMPT7b is a large Czech language model continously pretrained for 272b training steps from English [MPT7b](https://huggingface.co/mosaicml/mpt-7b) model. Model was pretrained on ~67b token [Large Czech Collection](https://huggingface.co/datasets/BUT-FIT/but_lcc) using Czech tokenizer, obtained using our vocabulary swap method (see below).
# Evaluation
Dev eval at CS-HellaSwag (automatically translated HellaSwag benchmark).
| Model | CS-HellaSwag Accuracy |
|---------------|----------------|
| mistral7b | 0.4992 |
| csmpt@130k steps [released] | __0.5004__ |
| csmpt@100k steps | 0.4959 |
| csmpt@75k steps | 0.4895 |
| csmpt@50k steps | 0.4755 |
| csmpt@26,5k steps | 0.4524 |
However, we ran validation over the course of training on CS-Hellaswag, and after 100k steps, the improvements were very noisy if any.
The improvement over mistral7b is not significant.
We will release more evaluations together with our benchmark **BenCzechMark** soon (see release plan!).
## Loss
We encountered loss spikes during training. As the model always recovered, and our budget for training 7b model was very constrained, we kept on training. We observed such loss spikes before in our ablations. In these ablations (with GPT-2 small), we found these to be
- (a) influenced by learning rate, the lower the learning rate, less they appear, as it gets higher, they start to appear, and with too high learning rate, the training might diverge on such loss spike.
- (b) in preliminary ablations, they only appear for continuously pretrained models. While we do not know why do they appear, we hypothesize this might be linked to theory on [Adam instability in time-domain correlation of update vectors](https://arxiv.org/pdf/2304.09871.pdf). However
such instabilities were previously observed only for much larger models (larger than 65b).
### Corpora
The model was trained on 3 corpora, which were hot-swapped during the training. These were collected/filtered during the course of training.
- Corpus #1 was the same we used for our [Czech GPT-2](https://huggingface.co/BUT-FIT/Czech-GPT-2-XL-133k) training (15,621,685,248 tokens).
- Corpus #2 contained 67,981,934,592 tokens, coming mostly from HPLT and CulturaX corpora.
- Corpus #3 (with 66,035,515,392 tokens) is Corpus #2 after we removed proportions of the unappropriate content (which avoided our other checks) through linear classifier.
<img src="figures/tloss_full.png" width="900"/>
Figure 1: Training loss.
<img src="figures/tloss_closeup.png" width="900"/>
Figure 2: Training loss closeup. We mark two hotswap places, where the training corpus #1 was switched for internal-corpus #2 and internal-corpus #2.1 respectively. The flat region between 112k steps and 119.5k steps is caused by missing data---due to an accident, we lost these logs.
Additionaly, we perform two ablations:
- (a) After first hot swap, we continued training on the corpus #1 for a while.
- (b) On step 94,000, the training loss stopped decreasing, increased, and around step 120,000 (near hot swap #2) started decreasing again. To ablate whether this was an effect of hot-swap,
- we resume training from step 93,000 using corpus #3. The optimizer states were reinitialized.
<img src="figures/vloss_closeup.png" width="900"/>
Figure 3: Test loss closeup, testing performed on split of internal-corpus #1. See Figure 2 description for ablation explanation.
## Training Method
### Vocabulary Swap
To transfer knowledge from English model to Czech, we developed a simple method that (i) aligns several tokens between two vocabularies and (ii) copies the embeddings from original language to new language.
<img src="figures/tllama_test.png" width="900"/>
Figure 4: Ablation: Test perplexity over the course of training for vocabulary swap method on TinyLLAMA. Our method (green curve) vs TinyLLAMA training from scratch (blue curve).
The vocabulary swap was done the same way as our [Czech-GPT-2](https://huggingface.co/BUT-FIT/Czech-GPT-2-XL-133k) model (check it out for comprehensive description.)
We managed to align 4,177 english tokens with corresponding czech tokens.
## Hyperparameters
Not mentioned hyperparameters were kept the same as for MPT.
| **Name** | **Value** | **Note** |
|----------------------------|---------------|----------------------------------------------------------------------------------------------|
| training sw | llm-foundry | We've done some minor patching (e.g., to allow DDP sync over file) |
| dataset_type | Concat | Sequences at the model's input were concatenated up to `$max_seq_len`, divided by EOS token. |
| tokenizer_size | 64k | Same as in [Czech-GPT-2](https://huggingface.co/BUT-FIT/Czech-GPT-2-XL-133k) |
| max_seq_len | 2048 | |
| batch_size | 1024 | |
| learning_rate | 1.0e-4 | |
| optimizer | LionW | |
| optimizer_betas | 0.9/0.95 | |
| optimizer_weight_decay | 0 | |
| optimizer_eps | 1.0e-08 | |
| gradient_clipping_max_norm | 1.0 | |
| attn_impl | flash2 | we used triton flash-attn 1 implementation for initial ~60k steps |
| positional_encoding | alibi | |
| fsdp | FULL_SHARD | (we had implementation issues with hybrid sharding in llm-foundry) |
| precision | bf16 | |
| scheduler | cosine | |
| scheduler_warmup | 100 steps | |
| scheduler_steps | 170,000 | |
| scheduler_alpha | 0.1 | So LR on last step is 0.1*(vanilla LR) |
# Usage
## How to Setup Environment
```bash
pip install transformers==4.37.2 torch==2.1.2 einops==0.7.0
# be sure to install right flash-attn, we use torch compiled with CUDA 12.1, no ABI, python 3.9, Linux x86_64 architecture
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.3/flash_attn-2.5.3+cu122torch2.1cxx11abiFALSE-cp39-cp39-linux_x86_64.whl
```
## Running the Code
```python
import torch
import transformers
from transformers import pipeline
name = 'BUT-FIT/csmpt7b'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(name, trust_remote_code=True)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Nejznámějším českým spisovatelem ',
max_new_tokens=100,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
use_cache=True))
```
# Training Data
We release most (95.79%) of our training data corpus as [BUT-Large Czech Collection](https://huggingface.co/datasets/BUT-FIT/but_lcc).
# Our Release Plan
| Stage | Description | Date |
|---------------|----------------|----------------|
| 1 | 'Best' model + training data | 12.03.2024
| 2 | All checkpoints + training code|
| 3 | __Benczechmark__ a collection of Czech datasets for few-shot LLM evaluation **Get in touch if you want to contribute!** |
| 4 | Preprint Publication |
## Getting in Touch
For further questions, email to `[email protected]`.
# Disclaimer
This is a probabilistic model, it can output stochastic information. Authors are not responsible for the model outputs. Use at your own risk.
# Acknowledgement
This work was supported by NAKI III program of Ministry of Culture Czech Republic, project semANT ---
"Sémantický průzkumník textového kulturního dědictví" grant no. `DH23P03OVV060` and
by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:`90254`).
# Citation
```bibtex
@article{benczechmark,
author = {Martin Fajčík, Martin Dočekal, Jan Doležal, Karel Beneš, Michal Hradiš},
title = {BenCzechMark: Machine Language Understanding Benchmark for Czech Language},
journal = {arXiv preprint arXiv:insert-arxiv-number-here},
year = {2024},
month = {March},
eprint = {insert-arxiv-number-here},
archivePrefix = {arXiv},
primaryClass = {cs.CL},
}
``` |