|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: LayoutLM_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LayoutLM_2 |
|
|
|
This model is a fine-tuned version of [BadreddineHug/LayoutLM_1](https://huggingface.co/BadreddineHug/LayoutLM_1) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4785 |
|
- Precision: 0.6599 |
|
- Recall: 0.7638 |
|
- F1: 0.7080 |
|
- Accuracy: 0.9097 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 3.7 | 100 | 0.4266 | 0.6597 | 0.7480 | 0.7011 | 0.9110 | |
|
| No log | 7.41 | 200 | 0.4415 | 0.6575 | 0.7559 | 0.7033 | 0.9084 | |
|
| No log | 11.11 | 300 | 0.4478 | 0.6575 | 0.7559 | 0.7033 | 0.9084 | |
|
| No log | 14.81 | 400 | 0.4481 | 0.6690 | 0.7638 | 0.7132 | 0.9123 | |
|
| 0.0237 | 18.52 | 500 | 0.4551 | 0.6644 | 0.7638 | 0.7106 | 0.9097 | |
|
| 0.0237 | 22.22 | 600 | 0.4542 | 0.6736 | 0.7638 | 0.7159 | 0.9097 | |
|
| 0.0237 | 25.93 | 700 | 0.4536 | 0.6783 | 0.7638 | 0.7185 | 0.9123 | |
|
| 0.0237 | 29.63 | 800 | 0.4662 | 0.6644 | 0.7638 | 0.7106 | 0.9097 | |
|
| 0.0237 | 33.33 | 900 | 0.4716 | 0.6486 | 0.7559 | 0.6982 | 0.9071 | |
|
| 0.0146 | 37.04 | 1000 | 0.4644 | 0.6577 | 0.7717 | 0.7101 | 0.9097 | |
|
| 0.0146 | 40.74 | 1100 | 0.4732 | 0.6599 | 0.7638 | 0.7080 | 0.9097 | |
|
| 0.0146 | 44.44 | 1200 | 0.4727 | 0.6667 | 0.7717 | 0.7153 | 0.9110 | |
|
| 0.0146 | 48.15 | 1300 | 0.4774 | 0.6531 | 0.7559 | 0.7007 | 0.9097 | |
|
| 0.0146 | 51.85 | 1400 | 0.4780 | 0.6599 | 0.7638 | 0.7080 | 0.9097 | |
|
| 0.0128 | 55.56 | 1500 | 0.4785 | 0.6599 | 0.7638 | 0.7080 | 0.9097 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|