|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: gpt2-kl_01_04-hs_cn-loto_lgbt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2-kl_01_04-hs_cn-loto_lgbt |
|
|
|
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5297 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 21 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 72.2334 | 0.03 | 10 | 64.5474 | |
|
| 30.2905 | 0.06 | 20 | 17.8612 | |
|
| 8.886 | 0.08 | 30 | 6.3404 | |
|
| 3.4861 | 0.11 | 40 | 2.6744 | |
|
| 1.6441 | 0.14 | 50 | 1.1987 | |
|
| 0.9746 | 0.17 | 60 | 0.8715 | |
|
| 1.0152 | 0.2 | 70 | 0.7307 | |
|
| 0.7374 | 0.23 | 80 | 0.6868 | |
|
| 0.6436 | 0.25 | 90 | 0.6203 | |
|
| 0.7525 | 0.28 | 100 | 0.6001 | |
|
| 0.6146 | 0.31 | 110 | 0.5946 | |
|
| 0.5676 | 0.34 | 120 | 0.5914 | |
|
| 0.563 | 0.37 | 130 | 0.5716 | |
|
| 0.6439 | 0.4 | 140 | 0.5743 | |
|
| 0.5706 | 0.42 | 150 | 0.5702 | |
|
| 0.689 | 0.45 | 160 | 0.5696 | |
|
| 0.5986 | 0.48 | 170 | 0.5557 | |
|
| 0.6159 | 0.51 | 180 | 0.5606 | |
|
| 0.5925 | 0.54 | 190 | 0.5498 | |
|
| 0.6124 | 0.57 | 200 | 0.5496 | |
|
| 0.559 | 0.59 | 210 | 0.5501 | |
|
| 0.6202 | 0.62 | 220 | 0.5544 | |
|
| 0.6504 | 0.65 | 230 | 0.5486 | |
|
| 0.697 | 0.68 | 240 | 0.5528 | |
|
| 0.5171 | 0.71 | 250 | 0.5522 | |
|
| 0.6247 | 0.74 | 260 | 0.5390 | |
|
| 0.5882 | 0.76 | 270 | 0.5350 | |
|
| 0.5941 | 0.79 | 280 | 0.5339 | |
|
| 0.5673 | 0.82 | 290 | 0.5321 | |
|
| 0.6336 | 0.85 | 300 | 0.5307 | |
|
| 0.5581 | 0.88 | 310 | 0.5264 | |
|
| 0.5499 | 0.91 | 320 | 0.5251 | |
|
| 0.5626 | 0.93 | 330 | 0.5227 | |
|
| 0.5443 | 0.96 | 340 | 0.5205 | |
|
| 0.6252 | 0.99 | 350 | 0.5215 | |
|
| 0.5427 | 1.02 | 360 | 0.5241 | |
|
| 0.5231 | 1.05 | 370 | 0.5297 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|