Thomas Male
Update handler.py
0aa7c36 verified
raw
history blame
5.89 kB
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from point_e.util.point_cloud import PointCloud
import json
import base64
import numpy as np
from io import BytesIO
import os
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
print('creating base model...')
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
print('creating base model...')
self.base_name = 'base40M-textvec'
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
self.base_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
print('creating image model...')
# default - base40M. use base300M or base1B for better results
self.base_image_name = 'base40M'
self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
self.base_image_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])
print('creating upsample model...')
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
self.upsampler_model.eval()
self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
print('downloading upsampler checkpoint...')
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
self.sdf_name = 'sdf'
self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device)
self.sdf_model.eval()
print('loading SDF model...')
self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device))
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. plotly json Data
"""
use_image = False
#Checks if an image key has been provided, and if so, uses the image data instead of text input
if "image" in data:
image_data_encoded = data.pop("image")
use_image = True
print('image data found')
else:
print('no image data found')
inputs = data.pop("inputs", data)
if use_image:
sampler = PointCloudSampler(
device=device,
models=[self.base_image_model, self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 3.0],
)
# Load an image to condition on.
image_data = base64.b64decode(image_data_encoded)
# Convert bytes to PIL Image
img = Image.open(BytesIO(image_data))
else:
sampler = PointCloudSampler(
device=device,
models=[self.base_model,self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
# run inference pipeline
with autocast(device.type):
samples = None
if use_image:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
samples = x
else:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
samples = x
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
pc = sampler.output_to_point_clouds(samples)[0]
print('type of pc: ', type(pc))
# Produce a mesh (with vertex colors)
mesh = marching_cubes_mesh(
pc=pc,
model=self.sdf_model,
batch_size=4096,
grid_size=32, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open('mesh.ply', 'wb') as f:
mesh.write_ply(f)
print(mesh)
pc_dict = {}
data_list = pc.coords.tolist()
json_string = json.dumps(data_list)
pc_dict['data'] = json_string
# Convert NumPy arrays to Python lists for serializing
serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}
# Serialize the dictionary to a JSON-formatted string
channel_data = json.dumps(serializable_channels)
pc_dict['channels'] = channel_data
#return pc_dict
return mesh