File size: 2,816 Bytes
2a7e8e8
 
 
 
 
 
 
 
 
 
 
45cc905
 
2a7e8e8
 
7076d2e
 
2a7e8e8
38d2e45
5457689
45cc905
 
122bcbf
89881fd
 
82a36b9
2a7e8e8
 
45cc905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7e8e8
45cc905
 
 
 
2a7e8e8
 
45cc905
 
 
 
 
2a7e8e8
 
05a3c54
2a7e8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0ee23
 
89881fd
 
 
 
 
2a7e8e8
 
 
 
 
 
85a2228
45cc905
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
  results: []
datasets:
- CIRCL/vulnerability-scores
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).

It achieves the following results on the evaluation set:
- Loss: 0.5153
- Accuracy: 0.8281

## Model description

It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.


## How to get started with the model

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

labels = ["low", "medium", "high", "critical"]

model_name = "CIRCL/vulnerability-scores"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)

# Run inference
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)


# Print results
print("Predictions:", predictions)
predicted_class = torch.argmax(predictions, dim=-1).item()
print("Predicted severity:", labels[predicted_class])
```


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6466        | 1.0   | 26311  | 0.6492          | 0.7420   |
| 0.6188        | 2.0   | 52622  | 0.5752          | 0.7695   |
| 0.4497        | 3.0   | 78933  | 0.5307          | 0.8002   |
| 0.4025        | 4.0   | 105244 | 0.5029          | 0.8168   |
| 0.3657        | 5.0   | 131555 | 0.5153          | 0.8281   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.1