cedricbonhomme's picture
Update README.md
1a2ffb1 verified
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
results: []
datasets:
- CIRCL/vulnerability-scores
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
It achieves the following results on the evaluation set:
- Loss: 1.1168
- Accuracy: 0.4499
## Model description
It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
## How to get started with the model
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
labels = ["low", "medium", "high", "critical"]
model_name = "CIRCL/vulnerability-scores"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Print results
print("Predictions:", predictions)
predicted_class = torch.argmax(predictions, dim=-1).item()
print("Predicted severity:", labels[predicted_class])
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 1.1123 | 1.0 | 26248 | 1.1174 | 0.4499 |
| 1.076 | 2.0 | 52496 | 1.1196 | 0.4499 |
| 1.0503 | 3.0 | 78744 | 1.1173 | 0.4499 |
| 1.1249 | 4.0 | 104992 | 1.1166 | 0.4499 |
| 1.0597 | 5.0 | 131240 | 1.1168 | 0.4499 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.1