BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CarlosElArtista/bge-base-financial-matryoshka")
# Run inference
sentences = [
"Symtuza (darunavir/C/FTC/TAF), a fixed dose combination product that includes cobicistat ('C'), emtricitabine ('FTC'), and tenofovir alafenamide ('TAF'), is commercialized by Janssen Sciences Ireland Unlimited Company.",
'What are the primary drugs included in Symtuza and which company commercializes it?',
'What was reported as the percentage revenue increase for the Asia Pacific & Latin America segment of NIKE from fiscal 2022 to fiscal 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_accuracy@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
cosine_accuracy@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
cosine_accuracy@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
cosine_precision@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_precision@3 | 0.269 | 0.2695 | 0.2681 | 0.2629 | 0.26 |
cosine_precision@5 | 0.1697 | 0.1683 | 0.1671 | 0.166 | 0.1643 |
cosine_precision@10 | 0.0899 | 0.0894 | 0.0896 | 0.0886 | 0.0881 |
cosine_recall@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_recall@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
cosine_recall@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
cosine_recall@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
cosine_ndcg@10 | 0.7849 | 0.7817 | 0.7751 | 0.7673 | 0.7451 |
cosine_mrr@10 | 0.7485 | 0.7455 | 0.7365 | 0.7293 | 0.7014 |
cosine_map@100 | 0.7523 | 0.7496 | 0.7402 | 0.7336 | 0.7052 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.05 tokens
- max: 512 tokens
- min: 2 tokens
- mean: 20.55 tokens
- max: 51 tokens
- Samples:
positive anchor The AMPTC for microinverters decreases by 25% each year beginning in 2030 and ending after 2032.
What is the trajectory of the AMPTC for microinverters starting in 2030?
results. Legal and Other Contingencies The Company is subject to various legal proceedings and claims that arise in the ordinary course of business, the outcomes of which are inherently uncertain. The Company records a liability when it is probable that a loss has been incurred and the amount is reasonably estimable, the determination of which requires significant judgment. Resolution of legal matters in a manner inconsistent with management’s expectations could have a material impact on the Company’s financial condition and operating results. Apple Inc.
2023 Form 10-K In 2023, the company recorded other operating charges of $1,951 million.
What was the total amount of other operating charges recorded by the company in 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0254 | 10 | 0.3873 | - | - | - | - | - |
0.0508 | 20 | 0.1907 | - | - | - | - | - |
0.0762 | 30 | 0.3031 | - | - | - | - | - |
0.1016 | 40 | 0.3314 | - | - | - | - | - |
0.1270 | 50 | 0.3452 | - | - | - | - | - |
0.1524 | 60 | 0.1831 | - | - | - | - | - |
0.1778 | 70 | 0.1286 | - | - | - | - | - |
0.2032 | 80 | 0.1162 | - | - | - | - | - |
0.2286 | 90 | 0.1464 | - | - | - | - | - |
0.2540 | 100 | 0.0409 | - | - | - | - | - |
0.2794 | 110 | 0.0886 | - | - | - | - | - |
0.3048 | 120 | 0.0964 | - | - | - | - | - |
0.3302 | 130 | 0.175 | - | - | - | - | - |
0.3556 | 140 | 0.1102 | - | - | - | - | - |
0.3810 | 150 | 0.0705 | - | - | - | - | - |
0.4063 | 160 | 0.0892 | - | - | - | - | - |
0.4317 | 170 | 0.1246 | - | - | - | - | - |
0.4571 | 180 | 0.0924 | - | - | - | - | - |
0.4825 | 190 | 0.05 | - | - | - | - | - |
0.5079 | 200 | 0.0676 | - | - | - | - | - |
0.5333 | 210 | 0.0746 | - | - | - | - | - |
0.5587 | 220 | 0.2014 | - | - | - | - | - |
0.5841 | 230 | 0.0568 | - | - | - | - | - |
0.6095 | 240 | 0.118 | - | - | - | - | - |
0.6349 | 250 | 0.0833 | - | - | - | - | - |
0.6603 | 260 | 0.1091 | - | - | - | - | - |
0.6857 | 270 | 0.1108 | - | - | - | - | - |
0.7111 | 280 | 0.1026 | - | - | - | - | - |
0.7365 | 290 | 0.1485 | - | - | - | - | - |
0.7619 | 300 | 0.0888 | - | - | - | - | - |
0.7873 | 310 | 0.0366 | - | - | - | - | - |
0.8127 | 320 | 0.0717 | - | - | - | - | - |
0.8381 | 330 | 0.0703 | - | - | - | - | - |
0.8635 | 340 | 0.0531 | - | - | - | - | - |
0.8889 | 350 | 0.0488 | - | - | - | - | - |
0.9143 | 360 | 0.0321 | - | - | - | - | - |
0.9397 | 370 | 0.1364 | - | - | - | - | - |
0.9651 | 380 | 0.2325 | - | - | - | - | - |
0.9905 | 390 | 0.0346 | - | - | - | - | - |
1.0 | 394 | - | 0.7833 | 0.7757 | 0.7692 | 0.7525 | 0.7314 |
1.0152 | 400 | 0.0742 | - | - | - | - | - |
1.0406 | 410 | 0.0147 | - | - | - | - | - |
1.0660 | 420 | 0.0777 | - | - | - | - | - |
1.0914 | 430 | 0.0353 | - | - | - | - | - |
1.1168 | 440 | 0.0093 | - | - | - | - | - |
1.1422 | 450 | 0.1484 | - | - | - | - | - |
1.1676 | 460 | 0.0167 | - | - | - | - | - |
1.1930 | 470 | 0.0039 | - | - | - | - | - |
1.2184 | 480 | 0.007 | - | - | - | - | - |
1.2438 | 490 | 0.0043 | - | - | - | - | - |
1.2692 | 500 | 0.0156 | - | - | - | - | - |
1.2946 | 510 | 0.0519 | - | - | - | - | - |
1.32 | 520 | 0.0163 | - | - | - | - | - |
1.3454 | 530 | 0.0214 | - | - | - | - | - |
1.3708 | 540 | 0.0025 | - | - | - | - | - |
1.3962 | 550 | 0.0129 | - | - | - | - | - |
1.4216 | 560 | 0.0045 | - | - | - | - | - |
1.4470 | 570 | 0.0025 | - | - | - | - | - |
1.4724 | 580 | 0.0023 | - | - | - | - | - |
1.4978 | 590 | 0.0114 | - | - | - | - | - |
1.5232 | 600 | 0.0636 | - | - | - | - | - |
1.5486 | 610 | 0.0066 | - | - | - | - | - |
1.5740 | 620 | 0.0112 | - | - | - | - | - |
1.5994 | 630 | 0.0087 | - | - | - | - | - |
1.6248 | 640 | 0.0026 | - | - | - | - | - |
1.6502 | 650 | 0.017 | - | - | - | - | - |
1.6756 | 660 | 0.0741 | - | - | - | - | - |
1.7010 | 670 | 0.0041 | - | - | - | - | - |
1.7263 | 680 | 0.0339 | - | - | - | - | - |
1.7517 | 690 | 0.003 | - | - | - | - | - |
1.7771 | 700 | 0.0052 | - | - | - | - | - |
1.8025 | 710 | 0.0464 | - | - | - | - | - |
1.8279 | 720 | 0.0015 | - | - | - | - | - |
1.8533 | 730 | 0.0169 | - | - | - | - | - |
1.8787 | 740 | 0.0178 | - | - | - | - | - |
1.9041 | 750 | 0.0033 | - | - | - | - | - |
1.9295 | 760 | 0.0165 | - | - | - | - | - |
1.9549 | 770 | 0.0091 | - | - | - | - | - |
1.9803 | 780 | 0.1162 | - | - | - | - | - |
2.0 | 788 | - | 0.7849 | 0.7820 | 0.7764 | 0.7661 | 0.7469 |
2.0051 | 790 | 0.0077 | - | - | - | - | - |
2.0305 | 800 | 0.0024 | - | - | - | - | - |
2.0559 | 810 | 0.0025 | - | - | - | - | - |
2.0813 | 820 | 0.0032 | - | - | - | - | - |
2.1067 | 830 | 0.0022 | - | - | - | - | - |
2.1321 | 840 | 0.0428 | - | - | - | - | - |
2.1575 | 850 | 0.0027 | - | - | - | - | - |
2.1829 | 860 | 0.0015 | - | - | - | - | - |
2.2083 | 870 | 0.0028 | - | - | - | - | - |
2.2337 | 880 | 0.0006 | - | - | - | - | - |
2.2590 | 890 | 0.0005 | - | - | - | - | - |
2.2844 | 900 | 0.0025 | - | - | - | - | - |
2.3098 | 910 | 0.002 | - | - | - | - | - |
2.3352 | 920 | 0.002 | - | - | - | - | - |
2.3606 | 930 | 0.0105 | - | - | - | - | - |
2.3860 | 940 | 0.0061 | - | - | - | - | - |
2.4114 | 950 | 0.0017 | - | - | - | - | - |
2.4368 | 960 | 0.0009 | - | - | - | - | - |
2.4622 | 970 | 0.0007 | - | - | - | - | - |
2.4876 | 980 | 0.001 | - | - | - | - | - |
2.5130 | 990 | 0.0008 | - | - | - | - | - |
2.5384 | 1000 | 0.044 | - | - | - | - | - |
2.5638 | 1010 | 0.0012 | - | - | - | - | - |
2.5892 | 1020 | 0.0103 | - | - | - | - | - |
2.6146 | 1030 | 0.0003 | - | - | - | - | - |
2.64 | 1040 | 0.0005 | - | - | - | - | - |
2.6654 | 1050 | 0.0972 | - | - | - | - | - |
2.6908 | 1060 | 0.0011 | - | - | - | - | - |
2.7162 | 1070 | 0.0093 | - | - | - | - | - |
2.7416 | 1080 | 0.0028 | - | - | - | - | - |
2.7670 | 1090 | 0.0004 | - | - | - | - | - |
2.7924 | 1100 | 0.0231 | - | - | - | - | - |
2.8178 | 1110 | 0.0021 | - | - | - | - | - |
2.8432 | 1120 | 0.0013 | - | - | - | - | - |
2.8686 | 1130 | 0.0012 | - | - | - | - | - |
2.8940 | 1140 | 0.002 | - | - | - | - | - |
2.9194 | 1150 | 0.001 | - | - | - | - | - |
2.9448 | 1160 | 0.007 | - | - | - | - | - |
2.9702 | 1170 | 0.018 | - | - | - | - | - |
2.9956 | 1180 | 0.001 | - | - | - | - | - |
3.0 | 1182 | - | 0.7832 | 0.7823 | 0.7754 | 0.7682 | 0.744 |
3.0203 | 1190 | 0.0028 | - | - | - | - | - |
3.0457 | 1200 | 0.0005 | - | - | - | - | - |
3.0711 | 1210 | 0.0007 | - | - | - | - | - |
3.0965 | 1220 | 0.0008 | - | - | - | - | - |
3.1219 | 1230 | 0.0123 | - | - | - | - | - |
3.1473 | 1240 | 0.0014 | - | - | - | - | - |
3.1727 | 1250 | 0.0005 | - | - | - | - | - |
3.1981 | 1260 | 0.0003 | - | - | - | - | - |
3.2235 | 1270 | 0.0006 | - | - | - | - | - |
3.2489 | 1280 | 0.0004 | - | - | - | - | - |
3.2743 | 1290 | 0.0007 | - | - | - | - | - |
3.2997 | 1300 | 0.0011 | - | - | - | - | - |
3.3251 | 1310 | 0.0006 | - | - | - | - | - |
3.3505 | 1320 | 0.0019 | - | - | - | - | - |
3.3759 | 1330 | 0.0006 | - | - | - | - | - |
3.4013 | 1340 | 0.0011 | - | - | - | - | - |
3.4267 | 1350 | 0.0006 | - | - | - | - | - |
3.4521 | 1360 | 0.0006 | - | - | - | - | - |
3.4775 | 1370 | 0.0004 | - | - | - | - | - |
3.5029 | 1380 | 0.0007 | - | - | - | - | - |
3.5283 | 1390 | 0.0383 | - | - | - | - | - |
3.5537 | 1400 | 0.0007 | - | - | - | - | - |
3.5790 | 1410 | 0.0019 | - | - | - | - | - |
3.6044 | 1420 | 0.0038 | - | - | - | - | - |
3.6298 | 1430 | 0.0007 | - | - | - | - | - |
3.6552 | 1440 | 0.0463 | - | - | - | - | - |
3.6806 | 1450 | 0.0373 | - | - | - | - | - |
3.7060 | 1460 | 0.0007 | - | - | - | - | - |
3.7314 | 1470 | 0.0022 | - | - | - | - | - |
3.7568 | 1480 | 0.0005 | - | - | - | - | - |
3.7822 | 1490 | 0.0007 | - | - | - | - | - |
3.8076 | 1500 | 0.0177 | - | - | - | - | - |
3.8330 | 1510 | 0.0006 | - | - | - | - | - |
3.8584 | 1520 | 0.0009 | - | - | - | - | - |
3.8838 | 1530 | 0.0012 | - | - | - | - | - |
3.9092 | 1540 | 0.0009 | - | - | - | - | - |
3.9346 | 1550 | 0.0012 | - | - | - | - | - |
3.96 | 1560 | 0.0004 | - | - | - | - | - |
3.9854 | 1570 | 0.0064 | - | - | - | - | - |
3.9905 | 1572 | - | 0.7849 | 0.7817 | 0.7751 | 0.7673 | 0.7451 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for CarlosElArtista/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.670
- Cosine Accuracy@3 on dim 768self-reported0.807
- Cosine Accuracy@5 on dim 768self-reported0.849
- Cosine Accuracy@10 on dim 768self-reported0.899
- Cosine Precision@1 on dim 768self-reported0.670
- Cosine Precision@3 on dim 768self-reported0.269
- Cosine Precision@5 on dim 768self-reported0.170
- Cosine Precision@10 on dim 768self-reported0.090
- Cosine Recall@1 on dim 768self-reported0.670
- Cosine Recall@3 on dim 768self-reported0.807