metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
Chevron provides long-standing employee support programs such as Ombuds,
an independent resource, a company hotline for reporting concerns, and the
Employee Assistance Program, a confidential consulting service for a range
of personal, family, and work-related concerns.
sentences:
- >-
What is the effective date for the new accounting standard on equity
securities for public entities?
- >-
What programs does Chevron have to support employee well-being and
address workplace issues?
- >-
What type of service is provided by Walmart in Mexico to enhance digital
connectivity?
- source_sentence: >-
ProConnect Tax Online is our cloud-based solution, which is designed for
full-service, year-round practices who prepare all forms of consumer and
small business returns and integrates with our QuickBooks Online
offerings.
sentences:
- >-
What is the significance of the Company’s trademarks to their
businesses?
- What are the features of Intuit's ProConnect Tax Online service?
- >-
Where can information regarding legal proceedings be found in the
document?
- source_sentence: >-
The section titled 'Financial Wtatement and Supplementary Data' is labeled
with the number 39 in the document.
sentences:
- >-
What is the numerical label associated with the section on Financial
Statements and Supplementary Data in the document?
- Why did the effective tax rate increase in 2022 compared to 2021?
- >-
What role does intellectual property play in Nike's competitive
position?
- source_sentence: >-
Our operating cash inflows include cash from vehicle sales and related
servicing, customer lease and financing payments, customer deposits, cash
from sales of regulatory credits and energy generation and storage
products, and interest income on our cash and investments portfolio.
sentences:
- >-
What was the net increase in cash and cash equivalents for the year
ending December 30, 2023?
- >-
What are the requirements for health insurers and group health plans in
providing cost estimates to consumers?
- What are the sources of operating cash inflows?
- source_sentence: >-
Symtuza (darunavir/C/FTC/TAF), a fixed dose combination product that
includes cobicistat ('C'), emtricitabine ('FTC'), and tenofovir
alafenamide ('TAF'), is commercialized by Janssen Sciences Ireland
Unlimited Company.
sentences:
- >-
What are the primary drugs included in Symtuza and which company
commercializes it?
- >-
What was reported as the percentage revenue increase for the Asia
Pacific & Latin America segment of NIKE from fiscal 2022 to fiscal 2023?
- >-
What are the main factors influencing competition for the company's
products?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7849037198632751
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7484699546485256
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7522833636034203
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8414285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26952380952380955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16828571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8414285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7816751594389505
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7455107709750564
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7495566091259342
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6528571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8042857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8357142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6528571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2680952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16714285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6528571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8042857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8357142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7751159904165151
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7365447845804987
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7402062124507567
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6442857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7885714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.83
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6442857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26285714285714284
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16599999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6442857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7885714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.83
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7673388064771406
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7293316326530613
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7335797814707157
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6057142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8214285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8814285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6057142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16428571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08814285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6057142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8214285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8814285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7451487636214842
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7013752834467117
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7052270125234881
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CarlosElArtista/bge-base-financial-matryoshka")
# Run inference
sentences = [
"Symtuza (darunavir/C/FTC/TAF), a fixed dose combination product that includes cobicistat ('C'), emtricitabine ('FTC'), and tenofovir alafenamide ('TAF'), is commercialized by Janssen Sciences Ireland Unlimited Company.",
'What are the primary drugs included in Symtuza and which company commercializes it?',
'What was reported as the percentage revenue increase for the Asia Pacific & Latin America segment of NIKE from fiscal 2022 to fiscal 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_accuracy@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
cosine_accuracy@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
cosine_accuracy@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
cosine_precision@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_precision@3 | 0.269 | 0.2695 | 0.2681 | 0.2629 | 0.26 |
cosine_precision@5 | 0.1697 | 0.1683 | 0.1671 | 0.166 | 0.1643 |
cosine_precision@10 | 0.0899 | 0.0894 | 0.0896 | 0.0886 | 0.0881 |
cosine_recall@1 | 0.67 | 0.6657 | 0.6529 | 0.6443 | 0.6057 |
cosine_recall@3 | 0.8071 | 0.8086 | 0.8043 | 0.7886 | 0.78 |
cosine_recall@5 | 0.8486 | 0.8414 | 0.8357 | 0.83 | 0.8214 |
cosine_recall@10 | 0.8986 | 0.8943 | 0.8957 | 0.8857 | 0.8814 |
cosine_ndcg@10 | 0.7849 | 0.7817 | 0.7751 | 0.7673 | 0.7451 |
cosine_mrr@10 | 0.7485 | 0.7455 | 0.7365 | 0.7293 | 0.7014 |
cosine_map@100 | 0.7523 | 0.7496 | 0.7402 | 0.7336 | 0.7052 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.05 tokens
- max: 512 tokens
- min: 2 tokens
- mean: 20.55 tokens
- max: 51 tokens
- Samples:
positive anchor The AMPTC for microinverters decreases by 25% each year beginning in 2030 and ending after 2032.
What is the trajectory of the AMPTC for microinverters starting in 2030?
results. Legal and Other Contingencies The Company is subject to various legal proceedings and claims that arise in the ordinary course of business, the outcomes of which are inherently uncertain. The Company records a liability when it is probable that a loss has been incurred and the amount is reasonably estimable, the determination of which requires significant judgment. Resolution of legal matters in a manner inconsistent with management’s expectations could have a material impact on the Company’s financial condition and operating results. Apple Inc.
2023 Form 10-K In 2023, the company recorded other operating charges of $1,951 million.
What was the total amount of other operating charges recorded by the company in 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0254 | 10 | 0.3873 | - | - | - | - | - |
0.0508 | 20 | 0.1907 | - | - | - | - | - |
0.0762 | 30 | 0.3031 | - | - | - | - | - |
0.1016 | 40 | 0.3314 | - | - | - | - | - |
0.1270 | 50 | 0.3452 | - | - | - | - | - |
0.1524 | 60 | 0.1831 | - | - | - | - | - |
0.1778 | 70 | 0.1286 | - | - | - | - | - |
0.2032 | 80 | 0.1162 | - | - | - | - | - |
0.2286 | 90 | 0.1464 | - | - | - | - | - |
0.2540 | 100 | 0.0409 | - | - | - | - | - |
0.2794 | 110 | 0.0886 | - | - | - | - | - |
0.3048 | 120 | 0.0964 | - | - | - | - | - |
0.3302 | 130 | 0.175 | - | - | - | - | - |
0.3556 | 140 | 0.1102 | - | - | - | - | - |
0.3810 | 150 | 0.0705 | - | - | - | - | - |
0.4063 | 160 | 0.0892 | - | - | - | - | - |
0.4317 | 170 | 0.1246 | - | - | - | - | - |
0.4571 | 180 | 0.0924 | - | - | - | - | - |
0.4825 | 190 | 0.05 | - | - | - | - | - |
0.5079 | 200 | 0.0676 | - | - | - | - | - |
0.5333 | 210 | 0.0746 | - | - | - | - | - |
0.5587 | 220 | 0.2014 | - | - | - | - | - |
0.5841 | 230 | 0.0568 | - | - | - | - | - |
0.6095 | 240 | 0.118 | - | - | - | - | - |
0.6349 | 250 | 0.0833 | - | - | - | - | - |
0.6603 | 260 | 0.1091 | - | - | - | - | - |
0.6857 | 270 | 0.1108 | - | - | - | - | - |
0.7111 | 280 | 0.1026 | - | - | - | - | - |
0.7365 | 290 | 0.1485 | - | - | - | - | - |
0.7619 | 300 | 0.0888 | - | - | - | - | - |
0.7873 | 310 | 0.0366 | - | - | - | - | - |
0.8127 | 320 | 0.0717 | - | - | - | - | - |
0.8381 | 330 | 0.0703 | - | - | - | - | - |
0.8635 | 340 | 0.0531 | - | - | - | - | - |
0.8889 | 350 | 0.0488 | - | - | - | - | - |
0.9143 | 360 | 0.0321 | - | - | - | - | - |
0.9397 | 370 | 0.1364 | - | - | - | - | - |
0.9651 | 380 | 0.2325 | - | - | - | - | - |
0.9905 | 390 | 0.0346 | - | - | - | - | - |
1.0 | 394 | - | 0.7833 | 0.7757 | 0.7692 | 0.7525 | 0.7314 |
1.0152 | 400 | 0.0742 | - | - | - | - | - |
1.0406 | 410 | 0.0147 | - | - | - | - | - |
1.0660 | 420 | 0.0777 | - | - | - | - | - |
1.0914 | 430 | 0.0353 | - | - | - | - | - |
1.1168 | 440 | 0.0093 | - | - | - | - | - |
1.1422 | 450 | 0.1484 | - | - | - | - | - |
1.1676 | 460 | 0.0167 | - | - | - | - | - |
1.1930 | 470 | 0.0039 | - | - | - | - | - |
1.2184 | 480 | 0.007 | - | - | - | - | - |
1.2438 | 490 | 0.0043 | - | - | - | - | - |
1.2692 | 500 | 0.0156 | - | - | - | - | - |
1.2946 | 510 | 0.0519 | - | - | - | - | - |
1.32 | 520 | 0.0163 | - | - | - | - | - |
1.3454 | 530 | 0.0214 | - | - | - | - | - |
1.3708 | 540 | 0.0025 | - | - | - | - | - |
1.3962 | 550 | 0.0129 | - | - | - | - | - |
1.4216 | 560 | 0.0045 | - | - | - | - | - |
1.4470 | 570 | 0.0025 | - | - | - | - | - |
1.4724 | 580 | 0.0023 | - | - | - | - | - |
1.4978 | 590 | 0.0114 | - | - | - | - | - |
1.5232 | 600 | 0.0636 | - | - | - | - | - |
1.5486 | 610 | 0.0066 | - | - | - | - | - |
1.5740 | 620 | 0.0112 | - | - | - | - | - |
1.5994 | 630 | 0.0087 | - | - | - | - | - |
1.6248 | 640 | 0.0026 | - | - | - | - | - |
1.6502 | 650 | 0.017 | - | - | - | - | - |
1.6756 | 660 | 0.0741 | - | - | - | - | - |
1.7010 | 670 | 0.0041 | - | - | - | - | - |
1.7263 | 680 | 0.0339 | - | - | - | - | - |
1.7517 | 690 | 0.003 | - | - | - | - | - |
1.7771 | 700 | 0.0052 | - | - | - | - | - |
1.8025 | 710 | 0.0464 | - | - | - | - | - |
1.8279 | 720 | 0.0015 | - | - | - | - | - |
1.8533 | 730 | 0.0169 | - | - | - | - | - |
1.8787 | 740 | 0.0178 | - | - | - | - | - |
1.9041 | 750 | 0.0033 | - | - | - | - | - |
1.9295 | 760 | 0.0165 | - | - | - | - | - |
1.9549 | 770 | 0.0091 | - | - | - | - | - |
1.9803 | 780 | 0.1162 | - | - | - | - | - |
2.0 | 788 | - | 0.7849 | 0.7820 | 0.7764 | 0.7661 | 0.7469 |
2.0051 | 790 | 0.0077 | - | - | - | - | - |
2.0305 | 800 | 0.0024 | - | - | - | - | - |
2.0559 | 810 | 0.0025 | - | - | - | - | - |
2.0813 | 820 | 0.0032 | - | - | - | - | - |
2.1067 | 830 | 0.0022 | - | - | - | - | - |
2.1321 | 840 | 0.0428 | - | - | - | - | - |
2.1575 | 850 | 0.0027 | - | - | - | - | - |
2.1829 | 860 | 0.0015 | - | - | - | - | - |
2.2083 | 870 | 0.0028 | - | - | - | - | - |
2.2337 | 880 | 0.0006 | - | - | - | - | - |
2.2590 | 890 | 0.0005 | - | - | - | - | - |
2.2844 | 900 | 0.0025 | - | - | - | - | - |
2.3098 | 910 | 0.002 | - | - | - | - | - |
2.3352 | 920 | 0.002 | - | - | - | - | - |
2.3606 | 930 | 0.0105 | - | - | - | - | - |
2.3860 | 940 | 0.0061 | - | - | - | - | - |
2.4114 | 950 | 0.0017 | - | - | - | - | - |
2.4368 | 960 | 0.0009 | - | - | - | - | - |
2.4622 | 970 | 0.0007 | - | - | - | - | - |
2.4876 | 980 | 0.001 | - | - | - | - | - |
2.5130 | 990 | 0.0008 | - | - | - | - | - |
2.5384 | 1000 | 0.044 | - | - | - | - | - |
2.5638 | 1010 | 0.0012 | - | - | - | - | - |
2.5892 | 1020 | 0.0103 | - | - | - | - | - |
2.6146 | 1030 | 0.0003 | - | - | - | - | - |
2.64 | 1040 | 0.0005 | - | - | - | - | - |
2.6654 | 1050 | 0.0972 | - | - | - | - | - |
2.6908 | 1060 | 0.0011 | - | - | - | - | - |
2.7162 | 1070 | 0.0093 | - | - | - | - | - |
2.7416 | 1080 | 0.0028 | - | - | - | - | - |
2.7670 | 1090 | 0.0004 | - | - | - | - | - |
2.7924 | 1100 | 0.0231 | - | - | - | - | - |
2.8178 | 1110 | 0.0021 | - | - | - | - | - |
2.8432 | 1120 | 0.0013 | - | - | - | - | - |
2.8686 | 1130 | 0.0012 | - | - | - | - | - |
2.8940 | 1140 | 0.002 | - | - | - | - | - |
2.9194 | 1150 | 0.001 | - | - | - | - | - |
2.9448 | 1160 | 0.007 | - | - | - | - | - |
2.9702 | 1170 | 0.018 | - | - | - | - | - |
2.9956 | 1180 | 0.001 | - | - | - | - | - |
3.0 | 1182 | - | 0.7832 | 0.7823 | 0.7754 | 0.7682 | 0.744 |
3.0203 | 1190 | 0.0028 | - | - | - | - | - |
3.0457 | 1200 | 0.0005 | - | - | - | - | - |
3.0711 | 1210 | 0.0007 | - | - | - | - | - |
3.0965 | 1220 | 0.0008 | - | - | - | - | - |
3.1219 | 1230 | 0.0123 | - | - | - | - | - |
3.1473 | 1240 | 0.0014 | - | - | - | - | - |
3.1727 | 1250 | 0.0005 | - | - | - | - | - |
3.1981 | 1260 | 0.0003 | - | - | - | - | - |
3.2235 | 1270 | 0.0006 | - | - | - | - | - |
3.2489 | 1280 | 0.0004 | - | - | - | - | - |
3.2743 | 1290 | 0.0007 | - | - | - | - | - |
3.2997 | 1300 | 0.0011 | - | - | - | - | - |
3.3251 | 1310 | 0.0006 | - | - | - | - | - |
3.3505 | 1320 | 0.0019 | - | - | - | - | - |
3.3759 | 1330 | 0.0006 | - | - | - | - | - |
3.4013 | 1340 | 0.0011 | - | - | - | - | - |
3.4267 | 1350 | 0.0006 | - | - | - | - | - |
3.4521 | 1360 | 0.0006 | - | - | - | - | - |
3.4775 | 1370 | 0.0004 | - | - | - | - | - |
3.5029 | 1380 | 0.0007 | - | - | - | - | - |
3.5283 | 1390 | 0.0383 | - | - | - | - | - |
3.5537 | 1400 | 0.0007 | - | - | - | - | - |
3.5790 | 1410 | 0.0019 | - | - | - | - | - |
3.6044 | 1420 | 0.0038 | - | - | - | - | - |
3.6298 | 1430 | 0.0007 | - | - | - | - | - |
3.6552 | 1440 | 0.0463 | - | - | - | - | - |
3.6806 | 1450 | 0.0373 | - | - | - | - | - |
3.7060 | 1460 | 0.0007 | - | - | - | - | - |
3.7314 | 1470 | 0.0022 | - | - | - | - | - |
3.7568 | 1480 | 0.0005 | - | - | - | - | - |
3.7822 | 1490 | 0.0007 | - | - | - | - | - |
3.8076 | 1500 | 0.0177 | - | - | - | - | - |
3.8330 | 1510 | 0.0006 | - | - | - | - | - |
3.8584 | 1520 | 0.0009 | - | - | - | - | - |
3.8838 | 1530 | 0.0012 | - | - | - | - | - |
3.9092 | 1540 | 0.0009 | - | - | - | - | - |
3.9346 | 1550 | 0.0012 | - | - | - | - | - |
3.96 | 1560 | 0.0004 | - | - | - | - | - |
3.9854 | 1570 | 0.0064 | - | - | - | - | - |
3.9905 | 1572 | - | 0.7849 | 0.7817 | 0.7751 | 0.7673 | 0.7451 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}