Casper0508's picture
End of training
40dad40 verified
|
raw
history blame
3.14 kB
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
  - generated_from_trainer
model-index:
  - name: MSc_llama2_finetuned_model_secondData10
    results: []
library_name: peft

MSc_llama2_finetuned_model_secondData10

This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16
  • load_in_4bit: True
  • load_in_8bit: False

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 250

Training results

Training Loss Epoch Step Validation Loss
3.8835 1.33 10 3.4352
2.9529 2.67 20 2.3780
1.991 4.0 30 1.6911
1.5061 5.33 40 1.2670
1.0666 6.67 50 0.8670
0.8464 8.0 60 0.8088
0.7622 9.33 70 0.7478
0.6869 10.67 80 0.7055
0.6336 12.0 90 0.6840
0.5789 13.33 100 0.6749
0.5518 14.67 110 0.6685
0.5159 16.0 120 0.6657
0.4894 17.33 130 0.6743
0.4674 18.67 140 0.6720
0.4496 20.0 150 0.6806
0.4292 21.33 160 0.6883
0.421 22.67 170 0.6910
0.4088 24.0 180 0.6956
0.3988 25.33 190 0.7014
0.3898 26.67 200 0.7065
0.3827 28.0 210 0.7091
0.3819 29.33 220 0.7104
0.3778 30.67 230 0.7117
0.3803 32.0 240 0.7126
0.3804 33.33 250 0.7118

Framework versions

  • PEFT 0.4.0
  • Transformers 4.38.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.2