Chernoffface's picture
Add SetFit model
587080c verified
|
raw
history blame
10.4 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
metrics:
  - accuracy
widget:
  - text: Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)
  - text: >-
      20-00-0366-iv Serious Games: Einführung in die Thematik „Serious Games“:
      wissenschaftlich-technische Grundlagen, Anwendungsgebiete und Trends. Die
      Einzelthemen umfassen unter anderem: • Einführung in Serious Games • Game
      Development, Game Design • Game Technology, Tools und Engines •
      Personalisierung und Adaption • Interactive Digital Storytelling •
      Authoring und Content Generation • Multiplayer Games • Game Interfaces und
      Sensor Technology • Effects, Affects und User Experience • Mobile Games •
      Serious Games Anwendungsbereiche und Best-Practice Beispiele Die Übungen
      enthalten Theorie- und Praxisanteile. Dabei wird die Verwendung einer Game
      Engine gelehrt.
  - text: >-
      Aerobotics Seminar: - Einführung in die Aufgabenstellung, die vorhandene
      Infrastruktur und den zu durchlaufenden Entwicklungsprozess


      - Entwurf und Implementierung von Algorithmen zur Flugregelung in
      Gruppenarbeit


      - Diskussion des Fortschritts in regelmäßigen Progress-Meetings


      - Flugdemonstration


      - Abschließende Präsentation und Dokumentation
  - text: >-
      Digital Transformations, Consumer Well-Being, and Sustainability: Physical
      consumption, and individual ownership of material products in particular,
      has traditionally been the default mode of consumption and its extent has
      long been considered a measure of personal and societal prosperity.
      However, our daily lives increasingly shift towards or are altered by
      digital environments, which nurture alternative forms of consumption such
      as sharing or access-based offers, cultivate the prevalence of virtual
      living worlds through fictional experiences, and alter our relations to
      material possessions by an increasing availability of digital solutions.




      The course exposes you to state-of-the-art research on consumer research
      and digital transformations in fields such as virtual reality, sharing
      economy, and blockchain technologies. You will be guided through
      background information of consumer behavior and consumer psychology. By
      creating a collaborative learning environment, we will explore and
      critically discuss how digital transformations affect consumer well-being
      and sustainability. 




      Your role is to be an active contributor in the class. This course
      consists of a lectures, discussion sessions and group presentations.
      Generally, analysis of readings will be used to guide our discussion. 




      The main objective of the course is to critically reflect upon current
      technological advancements that increasingly permeate everyday lives.
      Students will be engaged in exploring technological-social issues in
      marketing and be guided into a critical approach on
      technology-brands-consumers relationships behind digital transformations.
  - text: >-
      Grundlagen der IT-Sicherheit: Um einen Überblick der IT-Sicherheit zu
      vermitteln werden folgende Themen behandelt:


      Motivation für IT-Sicherheit


      Grundbegriffe der IT-Sicherheit


      Computer Malware


      Kryptographische Grundlagen


      Authentisierung


      Biometrie


      Zugriffskontrolle


      Netzwerkund


      Internetsicherheit


      Physikalische Sicherheit / Physikalische Angriffe


      Sicherheitsevaluierung und Zertifizierung


      Einführung in den Datenschutz
pipeline_tag: text-classification
inference: false

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
# Run inference
preds = model("Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 120.1215 537

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0011 1 0.2964 -
0.0552 50 0.2042 -
0.1105 100 0.1643 -
0.1657 150 0.1376 -
0.2210 200 0.1232 -
0.2762 250 0.1125 -
0.3315 300 0.1079 -
0.3867 350 0.0951 -
0.4420 400 0.0847 -
0.4972 450 0.0917 -
0.5525 500 0.085 -
0.6077 550 0.0758 -
0.6630 600 0.0743 -
0.7182 650 0.0671 -
0.7735 700 0.0743 -
0.8287 750 0.0571 -
0.8840 800 0.0625 -
0.9392 850 0.0607 -
0.9945 900 0.0686 -
1.0497 950 0.0541 -
1.1050 1000 0.0553 -
1.1602 1050 0.0565 -
1.2155 1100 0.0558 -
1.2707 1150 0.0578 -
1.3260 1200 0.0525 -
1.3812 1250 0.0541 -
1.4365 1300 0.049 -
1.4917 1350 0.0485 -
1.5470 1400 0.0475 -
1.6022 1450 0.0479 -
1.6575 1500 0.0514 -
1.7127 1550 0.0509 -
1.7680 1600 0.0517 -
1.8232 1650 0.0455 -
1.8785 1700 0.0493 -
1.9337 1750 0.0501 -
1.9890 1800 0.0492 -

Framework Versions

  • Python: 3.12.3
  • SetFit: 1.1.0
  • Sentence Transformers: 3.0.0
  • Transformers: 4.43.1
  • PyTorch: 2.3.1+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}