Chernoffface's picture
Add SetFit model
587080c verified
|
raw
history blame
10.4 kB
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
metrics:
- accuracy
widget:
- text: Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)
- text: '20-00-0366-iv Serious Games: Einführung in die Thematik „Serious Games“:
wissenschaftlich-technische Grundlagen, Anwendungsgebiete und Trends. Die Einzelthemen
umfassen unter anderem: • Einführung in Serious Games • Game Development, Game
Design • Game Technology, Tools und Engines • Personalisierung und Adaption •
Interactive Digital Storytelling • Authoring und Content Generation • Multiplayer
Games • Game Interfaces und Sensor Technology • Effects, Affects und User Experience
• Mobile Games • Serious Games Anwendungsbereiche und Best-Practice Beispiele
Die Übungen enthalten Theorie- und Praxisanteile. Dabei wird die Verwendung einer
Game Engine gelehrt.'
- text: 'Aerobotics Seminar: - Einführung in die Aufgabenstellung, die vorhandene
Infrastruktur und den zu durchlaufenden Entwicklungsprozess
- Entwurf und Implementierung von Algorithmen zur Flugregelung in Gruppenarbeit
- Diskussion des Fortschritts in regelmäßigen Progress-Meetings
- Flugdemonstration
- Abschließende Präsentation und Dokumentation'
- text: "Digital Transformations, Consumer Well-Being, and Sustainability: Physical\
\ consumption, and individual ownership of material products in particular, has\
\ traditionally been the default mode of consumption and its extent has long been\
\ considered a measure of personal and societal prosperity. However, our daily\
\ lives increasingly shift towards or are altered by digital environments, which\
\ nurture alternative forms of consumption such as sharing or access-based offers,\
\ cultivate the prevalence of virtual living worlds through fictional experiences,\
\ and alter our relations to material possessions by an increasing availability\
\ of digital solutions.\n\n\n\nThe course exposes you to state-of-the-art research\
\ on consumer research and digital transformations in fields such as virtual reality,\
\ sharing economy, and blockchain technologies. You will be guided through background\
\ information of consumer behavior and consumer psychology. By creating a collaborative\
\ learning environment, we will explore and critically discuss how digital transformations\
\ affect consumer well-being and sustainability. \n\n\n\nYour role is to be an\
\ active contributor in the class. This course consists of a lectures, discussion\
\ sessions and group presentations. Generally, analysis of readings will be used\
\ to guide our discussion. \n\n\n\nThe main objective of the course is to critically\
\ reflect upon current technological advancements that increasingly permeate everyday\
\ lives. Students will be engaged in exploring technological-social issues in\
\ marketing and be guided into a critical approach on technology-brands-consumers\
\ relationships behind digital transformations."
- text: 'Grundlagen der IT-Sicherheit: Um einen Überblick der IT-Sicherheit zu vermitteln
werden folgende Themen behandelt:
Motivation für IT-Sicherheit
Grundbegriffe der IT-Sicherheit
Computer Malware
Kryptographische Grundlagen
Authentisierung
Biometrie
Zugriffskontrolle
Netzwerkund
Internetsicherheit
Physikalische Sicherheit / Physikalische Angriffe
Sicherheitsevaluierung und Zertifizierung
Einführung in den Datenschutz'
pipeline_tag: text-classification
inference: false
---
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 128 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
# Run inference
preds = model("Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:---------|:----|
| Word count | 1 | 120.1215 | 537 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0011 | 1 | 0.2964 | - |
| 0.0552 | 50 | 0.2042 | - |
| 0.1105 | 100 | 0.1643 | - |
| 0.1657 | 150 | 0.1376 | - |
| 0.2210 | 200 | 0.1232 | - |
| 0.2762 | 250 | 0.1125 | - |
| 0.3315 | 300 | 0.1079 | - |
| 0.3867 | 350 | 0.0951 | - |
| 0.4420 | 400 | 0.0847 | - |
| 0.4972 | 450 | 0.0917 | - |
| 0.5525 | 500 | 0.085 | - |
| 0.6077 | 550 | 0.0758 | - |
| 0.6630 | 600 | 0.0743 | - |
| 0.7182 | 650 | 0.0671 | - |
| 0.7735 | 700 | 0.0743 | - |
| 0.8287 | 750 | 0.0571 | - |
| 0.8840 | 800 | 0.0625 | - |
| 0.9392 | 850 | 0.0607 | - |
| 0.9945 | 900 | 0.0686 | - |
| 1.0497 | 950 | 0.0541 | - |
| 1.1050 | 1000 | 0.0553 | - |
| 1.1602 | 1050 | 0.0565 | - |
| 1.2155 | 1100 | 0.0558 | - |
| 1.2707 | 1150 | 0.0578 | - |
| 1.3260 | 1200 | 0.0525 | - |
| 1.3812 | 1250 | 0.0541 | - |
| 1.4365 | 1300 | 0.049 | - |
| 1.4917 | 1350 | 0.0485 | - |
| 1.5470 | 1400 | 0.0475 | - |
| 1.6022 | 1450 | 0.0479 | - |
| 1.6575 | 1500 | 0.0514 | - |
| 1.7127 | 1550 | 0.0509 | - |
| 1.7680 | 1600 | 0.0517 | - |
| 1.8232 | 1650 | 0.0455 | - |
| 1.8785 | 1700 | 0.0493 | - |
| 1.9337 | 1750 | 0.0501 | - |
| 1.9890 | 1800 | 0.0492 | - |
### Framework Versions
- Python: 3.12.3
- SetFit: 1.1.0
- Sentence Transformers: 3.0.0
- Transformers: 4.43.1
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->