|
---
|
|
library_name: setfit
|
|
tags:
|
|
- setfit
|
|
- sentence-transformers
|
|
- text-classification
|
|
- generated_from_setfit_trainer
|
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
|
metrics:
|
|
- accuracy
|
|
widget:
|
|
- text: Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)
|
|
- text: '20-00-0366-iv Serious Games: Einführung in die Thematik „Serious Games“:
|
|
wissenschaftlich-technische Grundlagen, Anwendungsgebiete und Trends. Die Einzelthemen
|
|
umfassen unter anderem: • Einführung in Serious Games • Game Development, Game
|
|
Design • Game Technology, Tools und Engines • Personalisierung und Adaption •
|
|
Interactive Digital Storytelling • Authoring und Content Generation • Multiplayer
|
|
Games • Game Interfaces und Sensor Technology • Effects, Affects und User Experience
|
|
• Mobile Games • Serious Games Anwendungsbereiche und Best-Practice Beispiele
|
|
Die Übungen enthalten Theorie- und Praxisanteile. Dabei wird die Verwendung einer
|
|
Game Engine gelehrt.'
|
|
- text: 'Aerobotics Seminar: - Einführung in die Aufgabenstellung, die vorhandene
|
|
Infrastruktur und den zu durchlaufenden Entwicklungsprozess
|
|
|
|
|
|
- Entwurf und Implementierung von Algorithmen zur Flugregelung in Gruppenarbeit
|
|
|
|
|
|
- Diskussion des Fortschritts in regelmäßigen Progress-Meetings
|
|
|
|
|
|
- Flugdemonstration
|
|
|
|
|
|
- Abschließende Präsentation und Dokumentation'
|
|
- text: "Digital Transformations, Consumer Well-Being, and Sustainability: Physical\
|
|
\ consumption, and individual ownership of material products in particular, has\
|
|
\ traditionally been the default mode of consumption and its extent has long been\
|
|
\ considered a measure of personal and societal prosperity. However, our daily\
|
|
\ lives increasingly shift towards or are altered by digital environments, which\
|
|
\ nurture alternative forms of consumption such as sharing or access-based offers,\
|
|
\ cultivate the prevalence of virtual living worlds through fictional experiences,\
|
|
\ and alter our relations to material possessions by an increasing availability\
|
|
\ of digital solutions.\n\n\n\nThe course exposes you to state-of-the-art research\
|
|
\ on consumer research and digital transformations in fields such as virtual reality,\
|
|
\ sharing economy, and blockchain technologies. You will be guided through background\
|
|
\ information of consumer behavior and consumer psychology. By creating a collaborative\
|
|
\ learning environment, we will explore and critically discuss how digital transformations\
|
|
\ affect consumer well-being and sustainability. \n\n\n\nYour role is to be an\
|
|
\ active contributor in the class. This course consists of a lectures, discussion\
|
|
\ sessions and group presentations. Generally, analysis of readings will be used\
|
|
\ to guide our discussion. \n\n\n\nThe main objective of the course is to critically\
|
|
\ reflect upon current technological advancements that increasingly permeate everyday\
|
|
\ lives. Students will be engaged in exploring technological-social issues in\
|
|
\ marketing and be guided into a critical approach on technology-brands-consumers\
|
|
\ relationships behind digital transformations."
|
|
- text: 'Grundlagen der IT-Sicherheit: Um einen Überblick der IT-Sicherheit zu vermitteln
|
|
werden folgende Themen behandelt:
|
|
|
|
|
|
Motivation für IT-Sicherheit
|
|
|
|
|
|
Grundbegriffe der IT-Sicherheit
|
|
|
|
|
|
Computer Malware
|
|
|
|
|
|
Kryptographische Grundlagen
|
|
|
|
|
|
Authentisierung
|
|
|
|
|
|
Biometrie
|
|
|
|
|
|
Zugriffskontrolle
|
|
|
|
|
|
Netzwerkund
|
|
|
|
|
|
Internetsicherheit
|
|
|
|
|
|
Physikalische Sicherheit / Physikalische Angriffe
|
|
|
|
|
|
Sicherheitsevaluierung und Zertifizierung
|
|
|
|
|
|
Einführung in den Datenschutz'
|
|
pipeline_tag: text-classification
|
|
inference: false
|
|
---
|
|
|
|
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
|
|
|
The model has been trained using an efficient few-shot learning technique that involves:
|
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
|
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** SetFit
|
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
|
- **Classification head:** a OneVsRestClassifier instance
|
|
- **Maximum Sequence Length:** 128 tokens
|
|
<!-- - **Number of Classes:** Unknown -->
|
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
|
|
|
## Uses
|
|
|
|
### Direct Use for Inference
|
|
|
|
First install the SetFit library:
|
|
|
|
```bash
|
|
pip install setfit
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
|
|
```python
|
|
from setfit import SetFitModel
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SetFitModel.from_pretrained("Chernoffface/fs-setfit-multilable-model")
|
|
# Run inference
|
|
preds = model("Mitarbeit am wissenschaftlichen Arbeitsplatz (LV0125)")
|
|
```
|
|
|
|
<!--
|
|
### Downstream Use
|
|
|
|
*List how someone could finetune this model on their own dataset.*
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Set Metrics
|
|
| Training set | Min | Median | Max |
|
|
|:-------------|:----|:---------|:----|
|
|
| Word count | 1 | 120.1215 | 537 |
|
|
|
|
### Training Hyperparameters
|
|
- batch_size: (16, 16)
|
|
- num_epochs: (2, 2)
|
|
- max_steps: -1
|
|
- sampling_strategy: oversampling
|
|
- num_iterations: 20
|
|
- body_learning_rate: (2e-05, 2e-05)
|
|
- head_learning_rate: 2e-05
|
|
- loss: CosineSimilarityLoss
|
|
- distance_metric: cosine_distance
|
|
- margin: 0.25
|
|
- end_to_end: False
|
|
- use_amp: False
|
|
- warmup_proportion: 0.1
|
|
- l2_weight: 0.01
|
|
- seed: 42
|
|
- eval_max_steps: -1
|
|
- load_best_model_at_end: False
|
|
|
|
### Training Results
|
|
| Epoch | Step | Training Loss | Validation Loss |
|
|
|:------:|:----:|:-------------:|:---------------:|
|
|
| 0.0011 | 1 | 0.2964 | - |
|
|
| 0.0552 | 50 | 0.2042 | - |
|
|
| 0.1105 | 100 | 0.1643 | - |
|
|
| 0.1657 | 150 | 0.1376 | - |
|
|
| 0.2210 | 200 | 0.1232 | - |
|
|
| 0.2762 | 250 | 0.1125 | - |
|
|
| 0.3315 | 300 | 0.1079 | - |
|
|
| 0.3867 | 350 | 0.0951 | - |
|
|
| 0.4420 | 400 | 0.0847 | - |
|
|
| 0.4972 | 450 | 0.0917 | - |
|
|
| 0.5525 | 500 | 0.085 | - |
|
|
| 0.6077 | 550 | 0.0758 | - |
|
|
| 0.6630 | 600 | 0.0743 | - |
|
|
| 0.7182 | 650 | 0.0671 | - |
|
|
| 0.7735 | 700 | 0.0743 | - |
|
|
| 0.8287 | 750 | 0.0571 | - |
|
|
| 0.8840 | 800 | 0.0625 | - |
|
|
| 0.9392 | 850 | 0.0607 | - |
|
|
| 0.9945 | 900 | 0.0686 | - |
|
|
| 1.0497 | 950 | 0.0541 | - |
|
|
| 1.1050 | 1000 | 0.0553 | - |
|
|
| 1.1602 | 1050 | 0.0565 | - |
|
|
| 1.2155 | 1100 | 0.0558 | - |
|
|
| 1.2707 | 1150 | 0.0578 | - |
|
|
| 1.3260 | 1200 | 0.0525 | - |
|
|
| 1.3812 | 1250 | 0.0541 | - |
|
|
| 1.4365 | 1300 | 0.049 | - |
|
|
| 1.4917 | 1350 | 0.0485 | - |
|
|
| 1.5470 | 1400 | 0.0475 | - |
|
|
| 1.6022 | 1450 | 0.0479 | - |
|
|
| 1.6575 | 1500 | 0.0514 | - |
|
|
| 1.7127 | 1550 | 0.0509 | - |
|
|
| 1.7680 | 1600 | 0.0517 | - |
|
|
| 1.8232 | 1650 | 0.0455 | - |
|
|
| 1.8785 | 1700 | 0.0493 | - |
|
|
| 1.9337 | 1750 | 0.0501 | - |
|
|
| 1.9890 | 1800 | 0.0492 | - |
|
|
|
|
### Framework Versions
|
|
- Python: 3.12.3
|
|
- SetFit: 1.1.0
|
|
- Sentence Transformers: 3.0.0
|
|
- Transformers: 4.43.1
|
|
- PyTorch: 2.3.1+cu121
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
```bibtex
|
|
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
|
doi = {10.48550/ARXIV.2209.11055},
|
|
url = {https://arxiv.org/abs/2209.11055},
|
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
|
title = {Efficient Few-Shot Learning Without Prompts},
|
|
publisher = {arXiv},
|
|
year = {2022},
|
|
copyright = {Creative Commons Attribution 4.0 International}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |