allminidatamarker / README.md
Corran's picture
End of training
2dbcd6b verified
metadata
library_name: transformers
license: apache-2.0
base_model: sentence-transformers/all-MiniLM-L12-v2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: allminidatamarker
    results: []

allminidatamarker

This model is a fine-tuned version of sentence-transformers/all-MiniLM-L12-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5075
  • Precision: 0.2471
  • Recall: 0.7698
  • F1: 0.3741
  • Accuracy: 0.8521

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0925 1.0 38 0.6276 0.0122 0.0719 0.0208 0.8231
1.0925 2.0 76 0.3662 0.0677 0.4245 0.1167 0.8200
0.5958 3.0 114 0.4129 0.1643 0.7338 0.2684 0.8132
0.5958 4.0 152 0.4021 0.2243 0.8777 0.3572 0.8240
0.5958 5.0 190 0.3689 0.2495 0.8921 0.3899 0.8458
0.1649 6.0 228 0.3811 0.2597 0.8201 0.3945 0.8573
0.1649 7.0 266 0.4279 0.2806 0.8417 0.4209 0.8602
0.0941 8.0 304 0.4482 0.2322 0.7050 0.3494 0.8535
0.0941 9.0 342 0.4992 0.1965 0.5612 0.2910 0.8483
0.0941 10.0 380 0.5075 0.2471 0.7698 0.3741 0.8521

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2