metadata
tags:
- merge
- mergekit
- lazymergekit
- KoboldAI/LLaMA2-13B-Tiefighter
- DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp
base_model:
- KoboldAI/LLaMA2-13B-Tiefighter
- DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp
Version 2:
Attempt to use linear "retraining" to fix issues with orginal model (D_AU-Tiefighter-Giraffe-13B-32k-slerp) merge from step 1.
Seems to be successful.
Model is working correctly and GGUFs are also working correctly with context at 32768.
Imatrix Plus GGUFs upload to follow shortly.
D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp
D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: KoboldAI/LLaMA2-13B-Tiefighter
parameters:
weight: 0.8
- model: DavidAU/D_AU-Tiefighter-Giraffe-13B-32k-slerp
parameters:
weight: 0.2
merge_method: linear
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "DavidAU/D_AU-Tiefighter-Plus-Giraffe-13B-32k-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])