|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swinv2-tiny-patch4-window8-256 |
|
tags: |
|
- image-classification |
|
- vision |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: swinv2-tiny-panorama-IQA |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swinv2-tiny-panorama-IQA |
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the isiqa-2019-hf dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0211 |
|
- Srocc: 0.0896 |
|
- Lcc: 0.2316 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 10 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 50.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Srocc | Lcc | |
|
|:-------------:|:-------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.8571 | 3 | 0.1747 | 0.1087 | 0.1976 | |
|
| No log | 2.0 | 7 | 0.0570 | 0.1042 | 0.1898 | |
|
| 0.1599 | 2.8571 | 10 | 0.0320 | 0.1126 | 0.1686 | |
|
| 0.1599 | 4.0 | 14 | 0.0511 | 0.0265 | 0.1235 | |
|
| 0.1599 | 4.8571 | 17 | 0.0274 | -0.0004 | 0.1029 | |
|
| 0.0602 | 6.0 | 21 | 0.0375 | -0.0406 | 0.0900 | |
|
| 0.0602 | 6.8571 | 24 | 0.0306 | -0.0533 | 0.0830 | |
|
| 0.0602 | 8.0 | 28 | 0.0255 | -0.0726 | 0.0714 | |
|
| 0.029 | 8.8571 | 31 | 0.0247 | -0.0568 | 0.0734 | |
|
| 0.029 | 10.0 | 35 | 0.0293 | -0.0429 | 0.0900 | |
|
| 0.029 | 10.8571 | 38 | 0.0259 | -0.0317 | 0.0982 | |
|
| 0.0199 | 12.0 | 42 | 0.0238 | -0.0073 | 0.1288 | |
|
| 0.0199 | 12.8571 | 45 | 0.0243 | 0.0216 | 0.1594 | |
|
| 0.0199 | 14.0 | 49 | 0.0259 | 0.0454 | 0.1810 | |
|
| 0.0161 | 14.8571 | 52 | 0.0224 | 0.0568 | 0.1954 | |
|
| 0.0161 | 16.0 | 56 | 0.0211 | 0.0896 | 0.2316 | |
|
| 0.0161 | 16.8571 | 59 | 0.0223 | 0.1001 | 0.2544 | |
|
| 0.0132 | 18.0 | 63 | 0.0217 | 0.0981 | 0.2681 | |
|
| 0.0132 | 18.8571 | 66 | 0.0221 | 0.1155 | 0.2746 | |
|
| 0.0103 | 20.0 | 70 | 0.0228 | 0.1230 | 0.2831 | |
|
| 0.0103 | 20.8571 | 73 | 0.0245 | 0.1327 | 0.2944 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|