|
--- |
|
library_name: transformers |
|
base_model: csebuetnlp/banglabert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bangla-hatespeech-analysis |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bangla-hatespeech-analysis |
|
|
|
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4000 |
|
- Accuracy: 0.8694 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------:| |
|
| 0.3883 | 0.2700 | 1000 | 0.3539 | 0.8531 | |
|
| 0.3848 | 0.5400 | 2000 | 0.3685 | 0.8531 | |
|
| 0.3438 | 0.8099 | 3000 | 0.3294 | 0.8635 | |
|
| 0.2659 | 1.0799 | 4000 | 0.3643 | 0.8605 | |
|
| 0.2775 | 1.3499 | 5000 | 0.3422 | 0.8695 | |
|
| 0.2956 | 1.6199 | 6000 | 0.3923 | 0.8535 | |
|
| 0.2848 | 1.8898 | 7000 | 0.3431 | 0.8701 | |
|
| 0.2263 | 2.1598 | 8000 | 0.3707 | 0.8729 | |
|
| 0.1947 | 2.4298 | 9000 | 0.4239 | 0.8737 | |
|
| 0.2111 | 2.6998 | 10000 | 0.3852 | 0.8701 | |
|
| 0.1759 | 2.9698 | 11000 | 0.4000 | 0.8694 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|