DrishtiSharma's picture
Update README.md
2e4a403
|
raw
history blame
2.44 kB
metadata
language:
  - mt
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - mt
  - robust-speech-event
  - model_for_talk
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-xls-r-300m-mt-o1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: mt
        metrics:
          - name: Test WER
            type: wer
            value: 0.2378369069146646
          - name: Test CER
            type: cer
            value: 0.050364163712536256

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1987
  • Wer: 0.1920

###Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Maltese language not found in speech-recognition-community-v2/dev_data!

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1721 18.02 2000 0.3831 0.4066
0.7849 36.04 4000 0.2191 0.2417
0.6723 54.05 6000 0.2056 0.2134
0.6015 72.07 8000 0.2008 0.2031
0.5386 90.09 10000 0.1967 0.1953

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0