DunnBC22's picture
update model card README.md
7ebbf6c
|
raw
history blame
1.77 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - source_data
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-large-cased-lora-finetuned-ner-EMBO-SourceData
    results: []

bert-large-cased-lora-finetuned-ner-EMBO-SourceData

This model is a fine-tuned version of bert-large-cased on the source_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1282
  • Precision: 0.7999
  • Recall: 0.8278
  • F1: 0.8136
  • Accuracy: 0.9584

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1552 1.0 3454 0.1499 0.7569 0.7968 0.7763 0.9516
0.1179 2.0 6908 0.1328 0.7910 0.8120 0.8013 0.9564
0.0998 3.0 10362 0.1282 0.7999 0.8278 0.8136 0.9584

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3