|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: efficientformer-l3-300-Brain_Tumors_Image_Classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7817258883248731 |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
<h1> |
|
efficientformer-l3-300-Brain_Tumors_Image_Classification |
|
</h1> |
|
|
|
This model is a fine-tuned version of [snap-research/efficientformer-l3-300](https://huggingface.co/snap-research/efficientformer-l3-300). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2761 |
|
- Accuracy: 0.7817 |
|
- F1 |
|
- Weighted: 0.7381 |
|
- Micro: 0.7817 |
|
- Macro: 0.7465 |
|
- Recall |
|
- Weighted: 0.7817 |
|
- Micro: 0.7817 |
|
- Macro: 0.7771 |
|
- Precision |
|
- Weighted: 0.8442 |
|
- Micro: 0.7817 |
|
- Macro: 0.8613 |
|
|
|
<div style="text-align: center;"> |
|
<h2> |
|
Model Description |
|
</h2> |
|
<a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/EfficientFormer-%20Image%20Classification.ipynb"> |
|
Click here for the code that I used to create this model |
|
</a> |
|
This project is part of a comparison of seventeen (17) transformers. |
|
<a href="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/README.md"> |
|
Click here to see the README markdown file for the full project |
|
</a> |
|
<h2> |
|
Intended Uses & Limitations |
|
</h2> |
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
<h2> |
|
Training & Evaluation Data |
|
</h2> |
|
<a href="https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri"> |
|
Brain Tumor Image Classification Dataset |
|
</a> |
|
<h2> |
|
Sample Images |
|
</h2> |
|
<img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Sample%20Images.png" /> |
|
<h2> |
|
Class Distribution of Training Dataset |
|
</h2> |
|
<img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Training%20Dataset.png"/> |
|
<h2> |
|
Class Distribution of Evaluation Dataset |
|
</h2> |
|
<img src="https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Brain%20Tumors%20Image%20Classification%20Comparison/Images/Class%20Distribution%20-%20Testing%20Dataset.png"/> |
|
</div> |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 1.2856 | 1.0 | 180 | 1.4677 | 0.7284 | 0.6798 | 0.7284 | 0.6829 | 0.7284 | 0.7284 | 0.7133 | 0.8156 | 0.7284 | 0.8350 | |
|
| 1.2856 | 2.0 | 360 | 2.1421 | 0.7563 | 0.7146 | 0.7563 | 0.7211 | 0.7563 | 0.7563 | 0.7471 | 0.8381 | 0.7563 | 0.8551 | |
|
| 0.1405 | 3.0 | 540 | 2.2761 | 0.7817 | 0.7381 | 0.7817 | 0.7465 | 0.7817 | 0.7817 | 0.7771 | 0.8442 | 0.7817 | 0.8613 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |