selective-skunk-437 / README.md
ElMad's picture
stackoverflow_tag_classification/initial_run/deberta-v3-xsmall/selective-skunk-437
3e15d7c verified
|
raw
history blame
2.54 kB
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
model-index:
- name: selective-skunk-437
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# selective-skunk-437
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3511
- Hamming Loss: 0.1123
- Zero One Loss: 1.0
- Jaccard Score: 1.0
- Hamming Loss Optimised: 0.1123
- Hamming Loss Threshold: 0.9000
- Zero One Loss Optimised: 1.0
- Zero One Loss Threshold: 0.9000
- Jaccard Score Optimised: 1.0
- Jaccard Score Threshold: 0.9000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 2024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| 0.4991 | 1.0 | 50 | 0.3808 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 |
| 0.3696 | 2.0 | 100 | 0.3511 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3