|
--- |
|
language: |
|
- it |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- trl |
|
- sft |
|
- phi-3 |
|
- phi-3-mini |
|
- italian |
|
base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit |
|
datasets: |
|
- mchl-labs/stambecco_data_it |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** walid-iguider |
|
- **License:** cc-by-nc-sa-4.0 |
|
- **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit |
|
|
|
|
|
## Evaluation |
|
|
|
For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard). |
|
|
|
Here's a breakdown of the performance metrics: |
|
| Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average | |
|
|:----------------------------|:----------------------|:----------------|:---------------------|:--------| |
|
| **Accuracy Normalized** | 0.5841 | 0.4414 | 0.5365 | 0.5250 | |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("FairMind/Phi-3-mini-4k-instruct-bnb-4bit-Ita") |
|
model = AutoModelForCausalLM.from_pretrained("FairMind/Phi-3-mini-4k-instruct-bnb-4bit-Ita") |
|
model.to(device) |
|
|
|
|
|
generation_config = GenerationConfig( |
|
penalty_alpha=0.6, # The values balance the model confidence and the degeneration penalty in contrastive search decoding. |
|
do_sample = True, # Whether or not to use sampling ; use greedy decoding otherwise. |
|
top_k=5, # The number of highest probability vocabulary tokens to keep for top-k-filtering. |
|
temperature=0.001, # The value used to modulate the next token probabilities. |
|
repetition_penalty=1.7, # The parameter for repetition penalty. 1.0 means no penalty. |
|
max_new_tokens = 64, # The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. |
|
eos_token_id=tokenizer.eos_token_id, # The id of the *end-of-sequence* token. |
|
pad_token_id=tokenizer.eos_token_id, # The id of the *padding* token. |
|
) |
|
|
|
|
|
def generate_answer(question): |
|
messages = [ |
|
{"role": "user", "content": question}, |
|
] |
|
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) |
|
outputs = model.generate(model_inputs, generation_config=generation_config) |
|
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] |
|
return result |
|
|
|
|
|
question = """Quale è la torre più famosa di Parigi?""" |
|
answer = generate_answer(question) |
|
print(answer) |
|
``` |
|
--- |
|
|
|
This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |