whisper-medium-lv / README.md
FelixK7's picture
End of training
95d8e16 verified
metadata
library_name: transformers
language:
  - lv
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper medium LV - Felikss Kleins-{timestamp}
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: lv
          split: None
          args: 'config: lv, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 10.601196845400864

Whisper medium LV - Felikss Kleins-{timestamp}

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2428
  • Wer: 10.6012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.02 200 0.2930 22.3576
0.9797 1.0116 400 0.2359 18.2083
0.357 2.0033 600 0.2274 16.4665
0.2582 2.0233 800 0.2111 15.6402
0.1718 3.0149 1000 0.2135 14.9883
0.1718 4.0066 1200 0.2090 14.2294
0.1355 4.0266 1400 0.2193 13.5537
0.1024 5.0183 1600 0.2255 14.5048
0.0836 6.0099 1800 0.2145 12.9751
0.0699 7.0015 2000 0.2232 13.2129
0.0699 7.0216 2200 0.2181 12.7155
0.0598 8.0132 2400 0.2192 12.7076
0.054 9.0048 2600 0.2348 13.0048
0.0452 9.0249 2800 0.2241 13.0940
0.0433 10.0165 3000 0.2406 12.6362
0.0433 11.0082 3200 0.2283 12.5332
0.0377 11.0282 3400 0.2293 12.2201
0.0317 12.0198 3600 0.2323 12.6144
0.0297 13.0114 3800 0.2309 12.2974
0.0267 14.0031 4000 0.2342 11.9011
0.0267 14.0231 4200 0.2286 12.1171
0.0243 15.0147 4400 0.2364 12.0854
0.0218 16.0064 4600 0.2405 12.1805
0.021 16.0264 4800 0.2422 12.0338
0.0173 17.0180 5000 0.2416 11.9387
0.0173 18.0097 5200 0.2421 12.0180
0.0175 19.0013 5400 0.2385 11.6613
0.0161 19.0214 5600 0.2442 11.9090
0.0136 20.013 5800 0.2411 11.4513
0.0135 21.0047 6000 0.2470 12.0418
0.0135 21.0247 6200 0.2446 11.5246
0.0117 22.0163 6400 0.2466 11.7386
0.0111 23.0080 6600 0.2498 12.0715
0.01 23.0280 6800 0.2487 12.0596
0.0094 24.0196 7000 0.2431 11.4315
0.0094 25.0113 7200 0.2460 11.5702
0.009 26.0029 7400 0.2436 11.2293
0.0077 26.0229 7600 0.2467 11.3423
0.007 27.0145 7800 0.2439 11.0054
0.0071 28.0062 8000 0.2430 11.1996
0.0071 28.0262 8200 0.2458 11.1798
0.0063 29.0178 8400 0.2456 11.0847
0.0049 30.0095 8600 0.2450 11.1303
0.0049 31.0011 8800 0.2467 11.0530
0.0053 31.0211 9000 0.2448 11.1085
0.0053 32.0128 9200 0.2467 11.2650
0.0041 33.0044 9400 0.2444 11.0728
0.0045 33.0245 9600 0.2426 10.6547
0.0036 34.0161 9800 0.2427 10.5972
0.004 35.0078 10000 0.2428 10.6012

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.0.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1