t5-small-nl16-finnish / convert_t5x_checkpoint_to_flax.py
aapot
Add 50k train step model
7460603
raw
history blame
10.6 kB
# https://gist.github.com/stefan-it/30e4998ef159f33696e377a46f699d9f
import argparse
from t5x import checkpoints
from transformers import T5Config, FlaxT5ForConditionalGeneration, AutoModelForSeq2SeqLM
import torch
def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path):
config = T5Config.from_pretrained(config_name)
flax_model = FlaxT5ForConditionalGeneration(config=config)
t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["encoder"]["mlp"]
# Encoder
for layer_index in range(config.num_layers):
# Self-Attention
t5x_attention_key = t5x_model["target"]["encoder"]["encoder"]["attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_attention_out = t5x_model["target"]["encoder"]["encoder"]["attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_attention_query = t5x_model["target"]["encoder"]["encoder"]["attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_attention_value = t5x_model["target"]["encoder"]["encoder"]["attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_attention_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_attention_layer_norm"]["scale"][:, layer_index]
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
t5x_mlp_wi_1 = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
else:
t5x_mlp_wi = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
t5x_mlp_wo = t5x_model["target"]["encoder"]["encoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
## Layer Normalization
t5x_mlp_layer_norm = t5x_model["target"]["encoder"]["encoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
# Assigning
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm
if split_mlp_wi:
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model.params["encoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm
# Only for layer 0:
t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["encoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["encoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_encoder_rel_embedding[:, 0, :]
# Assigning
t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"]
flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm
# Decoder
for layer_index in range(config.num_decoder_layers):
# Self-Attention
t5x_attention_key = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_attention_out = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_attention_query = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_attention_value = t5x_model["target"]["decoder"]["decoder"]["self_attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_self_attention_layer_norm"]["scale"][:, layer_index]
# Encoder-Decoder-Attention
t5x_enc_dec_attention_key = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["key"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_out = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["out"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_query = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["query"]["kernel"][:, layer_index, :, :]
t5x_enc_dec_attention_value = t5x_model["target"]["decoder"]["decoder"]["encoder_decoder_attention"]["value"]["kernel"][:, layer_index, :, :]
## Layer Normalization
t5x_cross_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_cross_attention_layer_norm"]["scale"][:, layer_index]
# MLP
if split_mlp_wi:
t5x_mlp_wi_0 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_0"]["kernel"][:, layer_index, :]
t5x_mlp_wi_1 = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi_1"]["kernel"][:, layer_index, :]
else:
t5x_mlp_wi = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wi"]["kernel"][:, layer_index, :]
t5x_mlp_wo = t5x_model["target"]["decoder"]["decoder"]["mlp"]["wo"]["kernel"][:, layer_index, :]
## Layer Normalization
tx5_mlp_layer_norm = t5x_model["target"]["decoder"]["decoder"]["pre_mlp_layer_norm"]["scale"][:, layer_index]
# Assigning
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key.reshape(*t5x_attention_key.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out.reshape(-1, t5x_attention_out.shape[-1])
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query.reshape(*t5x_attention_query.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value.reshape(*t5x_attention_value.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key.reshape(*t5x_enc_dec_attention_key.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out.reshape(-1, t5x_enc_dec_attention_out.shape[-1])
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query.reshape(*t5x_enc_dec_attention_query.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value.reshape(*t5x_enc_dec_attention_value.shape[:-2], -1)
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm
if split_mlp_wi:
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1
else:
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo
flax_model.params["decoder"]["block"][str(layer_index)]["layer"]["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm
# Decoder Normalization
tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"]
flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm
# Only for layer 0:
t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["decoder"]["relpos_bias"]["rel_embedding"].T
flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"]["embedding"] = t5x_decoder_rel_embedding[:, 0, :]
# Token Embeddings
tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"]
flax_model.params["shared"]["embedding"] = tx5_token_embeddings
# LM Head
flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(flax_dump_folder_path)
print("T5X Model was sucessfully converted!")
def convert_flax_to_pytorch(flax_dump_folder_path, pytorch_dump_folder_path):
model = AutoModelForSeq2SeqLM.from_pretrained(flax_dump_folder_path, from_flax=True, torch_dtype=torch.float32)
model.save_pretrained(pytorch_dump_folder_path)
print("Flax model was sucessfully converted to Pytorch!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the TX5 checkpoint."
)
parser.add_argument(
"--config_name", default=None, type=str, required=True, help="Config name of T5 model."
)
parser.add_argument(
"--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model."
)
args = parser.parse_args()
convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
convert_flax_to_pytorch(args.flax_dump_folder_path, args.flax_dump_folder_path)