|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-1b-Yfreq_pause_speed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-1b-Yfreq_pause_speed |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1898 |
|
- Cer: 31.1501 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 10.7019 | 0.2580 | 200 | 5.2871 | 100.0 | |
|
| 2.9862 | 0.5160 | 400 | 2.5816 | 61.0021 | |
|
| 1.4741 | 0.7741 | 600 | 2.3005 | 54.0120 | |
|
| 1.1621 | 1.0321 | 800 | 1.7372 | 43.0569 | |
|
| 0.9078 | 1.2901 | 1000 | 1.5138 | 38.3459 | |
|
| 0.8152 | 1.5481 | 1200 | 1.5787 | 43.2566 | |
|
| 0.7734 | 1.8062 | 1400 | 1.5237 | 40.7307 | |
|
| 0.639 | 2.0642 | 1600 | 1.5034 | 37.8759 | |
|
| 0.5611 | 2.3222 | 1800 | 1.4911 | 38.7277 | |
|
| 0.5272 | 2.5802 | 2000 | 1.3679 | 37.0418 | |
|
| 0.4739 | 2.8383 | 2200 | 1.5056 | 41.7469 | |
|
| 0.4307 | 3.0963 | 2400 | 1.2907 | 34.7568 | |
|
| 0.3732 | 3.3543 | 2600 | 1.4109 | 36.4250 | |
|
| 0.3388 | 3.6123 | 2800 | 1.3857 | 37.1299 | |
|
| 0.3089 | 3.8703 | 3000 | 1.2816 | 33.6760 | |
|
| 0.2648 | 4.1284 | 3200 | 1.2267 | 32.7596 | |
|
| 0.2299 | 4.3864 | 3400 | 1.2182 | 32.3896 | |
|
| 0.2108 | 4.6444 | 3600 | 1.1818 | 31.1090 | |
|
| 0.2055 | 4.9024 | 3800 | 1.1898 | 31.1501 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.1.post100 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.20.1 |
|
|