|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-E10_speed_pause2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-E10_speed_pause2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2505 |
|
- Cer: 29.8296 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 34.0244 | 0.1289 | 200 | 5.3369 | 100.0 | |
|
| 5.0173 | 0.2579 | 400 | 4.7266 | 100.0 | |
|
| 4.8452 | 0.3868 | 600 | 4.6853 | 100.0 | |
|
| 4.7774 | 0.5158 | 800 | 4.5774 | 97.9377 | |
|
| 4.6964 | 0.6447 | 1000 | 4.5999 | 97.9495 | |
|
| 4.6269 | 0.7737 | 1200 | 4.4835 | 96.6569 | |
|
| 4.4084 | 0.9026 | 1400 | 4.5428 | 96.0811 | |
|
| 3.6551 | 1.0316 | 1600 | 3.4889 | 67.0094 | |
|
| 2.8629 | 1.1605 | 1800 | 2.8535 | 54.0541 | |
|
| 2.444 | 1.2895 | 2000 | 2.3817 | 48.1610 | |
|
| 2.1451 | 1.4184 | 2200 | 2.1738 | 44.4418 | |
|
| 1.8677 | 1.5474 | 2400 | 2.0255 | 42.4794 | |
|
| 1.7019 | 1.6763 | 2600 | 1.8023 | 38.5546 | |
|
| 1.5671 | 1.8053 | 2800 | 1.6997 | 36.3749 | |
|
| 1.4107 | 1.9342 | 3000 | 1.6382 | 38.1316 | |
|
| 1.2989 | 2.0632 | 3200 | 1.5183 | 33.8837 | |
|
| 1.1951 | 2.1921 | 3400 | 1.4678 | 33.1610 | |
|
| 1.0867 | 2.3211 | 3600 | 1.4365 | 33.0552 | |
|
| 1.083 | 2.4500 | 3800 | 1.2930 | 30.1234 | |
|
| 1.0106 | 2.5790 | 4000 | 1.2864 | 30.2585 | |
|
| 0.9832 | 2.7079 | 4200 | 1.2784 | 30.0411 | |
|
| 0.9353 | 2.8369 | 4400 | 1.2633 | 29.9471 | |
|
| 0.9108 | 2.9658 | 4600 | 1.2505 | 29.8296 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|