layoutlm-funsd / README.md
Haios141's picture
End of training
4eba019
|
raw
history blame
8.51 kB
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3725
  • Answer: {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065}
  • Overall Precision: 0.2804
  • Overall Recall: 0.3126
  • Overall F1: 0.2956
  • Overall Accuracy: 0.5437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8773 1.0 10 1.8489 {'precision': 0.00547645125958379, 'recall': 0.006180469715698393, 'f1': 0.005807200929152149, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.04874446085672083, 'recall': 0.030985915492957747, 'f1': 0.03788748564867968, 'number': 1065} 0.0227 0.0191 0.0207 0.2819
1.807 2.0 20 1.7831 {'precision': 0.005925925925925926, 'recall': 0.004944375772558714, 'f1': 0.005390835579514824, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.06716417910447761, 'recall': 0.03380281690140845, 'f1': 0.04497189256714553, 'number': 1065} 0.0327 0.0201 0.0249 0.2996
1.7516 3.0 30 1.7272 {'precision': 0.0071633237822349575, 'recall': 0.006180469715698393, 'f1': 0.006635700066357001, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.10175438596491228, 'recall': 0.054460093896713614, 'f1': 0.0709480122324159, 'number': 1065} 0.0496 0.0316 0.0386 0.3189
1.7057 4.0 40 1.6785 {'precision': 0.012626262626262626, 'recall': 0.012360939431396786, 'f1': 0.012492192379762648, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.16886930983847284, 'recall': 0.107981220657277, 'f1': 0.13172966781214204, 'number': 1065} 0.0849 0.0627 0.0721 0.3426
1.6571 5.0 50 1.6336 {'precision': 0.016286644951140065, 'recall': 0.018541409147095178, 'f1': 0.017341040462427744, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2211764705882353, 'recall': 0.17652582159624414, 'f1': 0.19634464751958225, 'number': 1065} 0.1146 0.1019 0.1079 0.3714
1.6219 6.0 60 1.5894 {'precision': 0.03238095238095238, 'recall': 0.042027194066749075, 'f1': 0.036578805809575045, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.26129666011787817, 'recall': 0.24976525821596243, 'f1': 0.2554008641382621, 'number': 1065} 0.1451 0.1505 0.1477 0.4028
1.5748 7.0 70 1.5484 {'precision': 0.03796296296296296, 'recall': 0.05067985166872682, 'f1': 0.04340921122286924, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.28073394495412846, 'recall': 0.28732394366197184, 'f1': 0.28399071925754066, 'number': 1065} 0.1599 0.1741 0.1667 0.4319
1.5387 8.0 80 1.5098 {'precision': 0.044036697247706424, 'recall': 0.059332509270704575, 'f1': 0.05055292259083728, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.30583333333333335, 'recall': 0.34460093896713617, 'f1': 0.3240618101545254, 'number': 1065} 0.1812 0.2082 0.1938 0.4623
1.5004 9.0 90 1.4753 {'precision': 0.05149812734082397, 'recall': 0.06798516687268233, 'f1': 0.05860415556739478, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3378812199036918, 'recall': 0.39530516431924884, 'f1': 0.36434443963652097, 'number': 1065} 0.2057 0.2388 0.2210 0.4887
1.4659 10.0 100 1.4462 {'precision': 0.058823529411764705, 'recall': 0.0754017305315204, 'f1': 0.06608884073672806, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3586530931871574, 'recall': 0.4300469483568075, 'f1': 0.39111870196413323, 'number': 1065} 0.2243 0.2604 0.2410 0.5046
1.4314 11.0 110 1.4207 {'precision': 0.06769230769230769, 'recall': 0.0815822002472188, 'f1': 0.07399103139013452, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.38271604938271603, 'recall': 0.46572769953051646, 'f1': 0.42016094875052945, 'number': 1065} 0.2475 0.2820 0.2636 0.5184
1.4242 12.0 120 1.4003 {'precision': 0.07203389830508475, 'recall': 0.08405438813349815, 'f1': 0.0775812892184826, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.40076628352490423, 'recall': 0.49107981220657276, 'f1': 0.4413502109704641, 'number': 1065} 0.2628 0.2965 0.2786 0.5273
1.3939 13.0 130 1.3855 {'precision': 0.07792207792207792, 'recall': 0.08899876390605686, 'f1': 0.0830929024812464, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.40953822861468586, 'recall': 0.507981220657277, 'f1': 0.45347862531433364, 'number': 1065} 0.2731 0.3076 0.2893 0.5367
1.3837 14.0 140 1.3764 {'precision': 0.08021978021978023, 'recall': 0.09023485784919653, 'f1': 0.08493310063990692, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.41635124905374715, 'recall': 0.5164319248826291, 'f1': 0.4610226320201173, 'number': 1065} 0.2792 0.3126 0.2950 0.5410
1.3603 15.0 150 1.3725 {'precision': 0.07982261640798226, 'recall': 0.08899876390605686, 'f1': 0.0841613091759205, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4174242424242424, 'recall': 0.5173708920187794, 'f1': 0.46205450733752623, 'number': 1065} 0.2804 0.3126 0.2956 0.5437

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3