ArabertHateSpeech

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the offenseval_2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2500
  • Accuracy: 0.9425
  • F1: 0.8544
  • Precision: 0.875
  • Recall: 0.8347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 490 0.1377 0.9321 0.8263 0.8551 0.7995
0.1418 2.0 980 0.0967 0.9321 0.8121 0.9210 0.7263
0.0898 3.0 1470 0.1082 0.9442 0.8517 0.9185 0.7940
0.0595 4.0 1960 0.1530 0.9338 0.8358 0.8370 0.8347
0.0405 5.0 2450 0.1559 0.9442 0.8579 0.8825 0.8347
0.0194 6.0 2940 0.2175 0.9398 0.8541 0.8364 0.8726
0.0153 7.0 3430 0.1994 0.9392 0.8452 0.8707 0.8211
0.0102 8.0 3920 0.2154 0.9403 0.8541 0.8439 0.8645
0.0093 9.0 4410 0.2296 0.9409 0.8470 0.8872 0.8103
0.0047 10.0 4900 0.2406 0.9420 0.8524 0.8768 0.8293
0.0038 11.0 5390 0.2530 0.9436 0.8591 0.8674 0.8509
0.0051 12.0 5880 0.2500 0.9425 0.8544 0.875 0.8347

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hollow211/ArabertHateSpeech

Finetuned
(2661)
this model

Evaluation results