ArabertHateSpeech / README.md
Hollow211's picture
End of training
32e5859
metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
  - generated_from_trainer
datasets:
  - offenseval_2020
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ArabertHateSpeech
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: offenseval_2020
          type: offenseval_2020
          config: ar
          split: test
          args: ar
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9425287356321839
          - name: F1
            type: f1
            value: 0.8543689320388349
          - name: Precision
            type: precision
            value: 0.875
          - name: Recall
            type: recall
            value: 0.8346883468834688

ArabertHateSpeech

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the offenseval_2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2500
  • Accuracy: 0.9425
  • F1: 0.8544
  • Precision: 0.875
  • Recall: 0.8347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 490 0.1377 0.9321 0.8263 0.8551 0.7995
0.1418 2.0 980 0.0967 0.9321 0.8121 0.9210 0.7263
0.0898 3.0 1470 0.1082 0.9442 0.8517 0.9185 0.7940
0.0595 4.0 1960 0.1530 0.9338 0.8358 0.8370 0.8347
0.0405 5.0 2450 0.1559 0.9442 0.8579 0.8825 0.8347
0.0194 6.0 2940 0.2175 0.9398 0.8541 0.8364 0.8726
0.0153 7.0 3430 0.1994 0.9392 0.8452 0.8707 0.8211
0.0102 8.0 3920 0.2154 0.9403 0.8541 0.8439 0.8645
0.0093 9.0 4410 0.2296 0.9409 0.8470 0.8872 0.8103
0.0047 10.0 4900 0.2406 0.9420 0.8524 0.8768 0.8293
0.0038 11.0 5390 0.2530 0.9436 0.8591 0.8674 0.8509
0.0051 12.0 5880 0.2500 0.9425 0.8544 0.875 0.8347

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3