|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- offenseval_2020 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ArabertHateSpeech |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: offenseval_2020 |
|
type: offenseval_2020 |
|
config: ar |
|
split: test |
|
args: ar |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9425287356321839 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8543689320388349 |
|
- name: Precision |
|
type: precision |
|
value: 0.875 |
|
- name: Recall |
|
type: recall |
|
value: 0.8346883468834688 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ArabertHateSpeech |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the offenseval_2020 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2500 |
|
- Accuracy: 0.9425 |
|
- F1: 0.8544 |
|
- Precision: 0.875 |
|
- Recall: 0.8347 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 490 | 0.1377 | 0.9321 | 0.8263 | 0.8551 | 0.7995 | |
|
| 0.1418 | 2.0 | 980 | 0.0967 | 0.9321 | 0.8121 | 0.9210 | 0.7263 | |
|
| 0.0898 | 3.0 | 1470 | 0.1082 | 0.9442 | 0.8517 | 0.9185 | 0.7940 | |
|
| 0.0595 | 4.0 | 1960 | 0.1530 | 0.9338 | 0.8358 | 0.8370 | 0.8347 | |
|
| 0.0405 | 5.0 | 2450 | 0.1559 | 0.9442 | 0.8579 | 0.8825 | 0.8347 | |
|
| 0.0194 | 6.0 | 2940 | 0.2175 | 0.9398 | 0.8541 | 0.8364 | 0.8726 | |
|
| 0.0153 | 7.0 | 3430 | 0.1994 | 0.9392 | 0.8452 | 0.8707 | 0.8211 | |
|
| 0.0102 | 8.0 | 3920 | 0.2154 | 0.9403 | 0.8541 | 0.8439 | 0.8645 | |
|
| 0.0093 | 9.0 | 4410 | 0.2296 | 0.9409 | 0.8470 | 0.8872 | 0.8103 | |
|
| 0.0047 | 10.0 | 4900 | 0.2406 | 0.9420 | 0.8524 | 0.8768 | 0.8293 | |
|
| 0.0038 | 11.0 | 5390 | 0.2530 | 0.9436 | 0.8591 | 0.8674 | 0.8509 | |
|
| 0.0051 | 12.0 | 5880 | 0.2500 | 0.9425 | 0.8544 | 0.875 | 0.8347 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|