File size: 4,721 Bytes
54a9478
6611f81
 
d5a0a8e
54a9478
6611f81
d5a0a8e
3648b14
d5a0a8e
6611f81
 
 
 
54a9478
6611f81
3648b14
6611f81
8636a75
 
6611f81
8636a75
6611f81
03d305d
8636a75
03d305d
8636a75
 
 
 
 
8171644
8636a75
 
 
 
0d27798
8636a75
03d305d
8636a75
03d305d
8636a75
 
 
 
 
 
 
9500cc2
 
 
 
 
 
 
8636a75
 
 
6611f81
 
 
 
 
7a9f37f
bd9fee0
6611f81
 
 
 
 
8636a75
6611f81
8636a75
6611f81
8636a75
6611f81
8636a75
 
80a0100
8636a75
 
 
 
 
6611f81
8636a75
 
 
 
 
 
6611f81
 
 
8636a75
6611f81
 
8636a75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language: 
  - zh

license: apache-2.0

tags:
  - DeBERTa

inference: true

widget:
- text: "生活的真谛是[MASK]。"
---

# Erlangshen-DeBERTa-v2-97M-Chinese

- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)

## 简介 Brief Introduction

善于处理NLU任务,采用全词掩码的,中文版的0.97亿参数DeBERTa-v2-Base。

Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2-Base with 97M parameters.

## 模型分类 Model Taxonomy

|  需求 Demand  | 任务 Task       | 系列 Series      | 模型 Model    | 参数 Parameter | 额外 Extra |
|  :----:  | :----:  | :----:  | :----:  | :----:  | :----:  |
| 通用 General  | 自然语言理解 NLU | 二郎神 Erlangshen | DeBERTa-v2 |      97M      |    中文 Chinese     |


## 模型信息 Model Information

参考论文:[DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://readpaper.com/paper/3033187248)

为了得到一个中文版的DeBERTa-v2-Base(97M),我们用悟道语料库(180G版本)进行预训练。我们在MLM中使用了全词掩码(wwm)的方式。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了24张A100约7天。

To get a Chinese DeBERTa-v2-Base (97M), we use WuDao Corpora (180 GB version) for pre-training. We employ the Whole Word Masking (wwm) in MLM. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 24 A100 GPUs.

### 下游任务 Performance

我们展示了下列下游任务的结果(dev集):

We present the results (dev set) on the following tasks:

| Model                                                                                                                            | AFQMC  | TNEWS1.1 | IFLYTEK | OCNLI  | CMNLI  |
| -------------------------------------------------------------------------------------------------------------------------------- | ------ | -------- | ------- | ------ | ------ |
| RoBERTa-base                                                                                                                     | 0.7406 | 0.575    | 0.6036  | 0.743  | 0.7973 |
| RoBERTa-large                                                                                                                    | 0.7488 | 0.5879   | 0.6152  | 0.777  | 0.814  |
| **[IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese)**            | 0.7405 | 0.571    | 0.5977  | 0.7568 | 0.807  |
| [IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese)              | 0.7498 | 0.5817   | 0.6042  | 0.8022 | 0.8301 |
| [IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese)              | 0.7549 | 0.5873   | 0.6177  | 0.8012 | 0.8389 |


## 使用 Usage

```python
from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
import torch

tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese', use_fast=False)
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese')
text = '生活的真谛是[MASK]。'
fillmask_pipe = FillMaskPipeline(model, tokenizer, device=7)
print(fillmask_pipe(text, top_k=10))
```

## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):

```text
@article{fengshenbang,
  author    = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}
```

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

```text
@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```