|
--- |
|
library_name: transformers |
|
tags: |
|
- phi-3 |
|
- phi-3-medium |
|
- phi-3-medium-4k-instruct |
|
- conversational |
|
- text-generation-inference |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
--- |
|
|
|
Official quantization of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using [PV-Tuning](https://arxiv.org/abs/2405.14852) on top of [AQLM](https://arxiv.org/abs/2401.06118). |
|
|
|
For this quantization, we used 1 codebook of 16 bits for groups of 8 weights. |
|
|
|
Results (0-shot `acc`): |
|
|
|
Results: |
|
| Model | Quantization | WikiText-2 | C4 | Model size, Gb | |
|
|------|------|-------|------|------| |
|
| [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) | None | | | 27.9 | |
|
| | [1x16g8 (2-bit, this model)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-2Bit-1x16-hf) | 5.18 | 8.56 | 4.2Gb | |
|
| | [1x16g16 (1-bit, model link)](https://huggingface.co/ISTA-DASLab/Phi-3-medium-4k-instruct-AQLM-PV-1Bit-1x16-hf) | 7.42 | 10.40 | 2.7Gb | |
|
|
|
|
|
In general, we always recommend the 2-bit models for best accuracy-size trade-offs. If tempted to use the 1-bit model, try a smaller model , |
|
e.g. Phi-3-**mini** quantized with AQLM+PV [(quantized model link)](https://huggingface.co/ISTA-DASLab/Phi-3-mini-4k-instruct-AQLM-PV-2Bit-1x16-hf) and compare the results, or check our [AQLM+PV collection](https://huggingface.co/collections/ISTA-DASLab/aqlmpv-66564dff5d84f00a893ba93f) for a more appropriate size. |
|
|
|
|
|
To learn more about the inference, as well as the information on how to quantize models yourself, please refer to the [official GitHub repo](https://github.com/Vahe1994/AQLM). |
|
The original code for PV-Tuning can be found in the [AQLM@pv-tuning](https://github.com/Vahe1994/AQLM/tree/pv-tuning) branch. |