File size: 4,202 Bytes
5cfc72d
 
 
 
 
 
 
 
 
70a3e24
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
1301041
5cfc72d
 
 
 
 
70a3e24
5cfc72d
 
 
33e472c
1301041
5cfc72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096f619
5cfc72d
 
 
 
 
33e472c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cfc72d
 
 
 
33e472c
5cfc72d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# delivery_truck_classification

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0942
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.67  | 1    | 1.8688          | 0.1818   |
| No log        | 1.67  | 2    | 1.7920          | 0.1818   |
| No log        | 2.67  | 3    | 1.6533          | 0.3636   |
| No log        | 3.67  | 4    | 1.4775          | 0.4545   |
| No log        | 4.67  | 5    | 1.2912          | 0.5909   |
| No log        | 5.67  | 6    | 1.1475          | 0.7273   |
| No log        | 6.67  | 7    | 1.0266          | 0.7727   |
| No log        | 7.67  | 8    | 0.9196          | 0.7727   |
| No log        | 8.67  | 9    | 0.8273          | 0.8182   |
| No log        | 9.67  | 10   | 0.7492          | 0.8182   |
| No log        | 10.67 | 11   | 0.6857          | 0.9091   |
| No log        | 11.67 | 12   | 0.6369          | 0.9091   |
| No log        | 12.67 | 13   | 0.5916          | 1.0      |
| No log        | 13.67 | 14   | 0.5462          | 1.0      |
| No log        | 14.67 | 15   | 0.4927          | 1.0      |
| No log        | 15.67 | 16   | 0.4390          | 1.0      |
| No log        | 16.67 | 17   | 0.3914          | 1.0      |
| No log        | 17.67 | 18   | 0.3446          | 1.0      |
| No log        | 18.67 | 19   | 0.3019          | 1.0      |
| 1.7058        | 19.67 | 20   | 0.2611          | 1.0      |
| 1.7058        | 20.67 | 21   | 0.2289          | 1.0      |
| 1.7058        | 21.67 | 22   | 0.1960          | 1.0      |
| 1.7058        | 22.67 | 23   | 0.1711          | 1.0      |
| 1.7058        | 23.67 | 24   | 0.1568          | 1.0      |
| 1.7058        | 24.67 | 25   | 0.1463          | 1.0      |
| 1.7058        | 25.67 | 26   | 0.1383          | 1.0      |
| 1.7058        | 26.67 | 27   | 0.1323          | 1.0      |
| 1.7058        | 27.67 | 28   | 0.1268          | 1.0      |
| 1.7058        | 28.67 | 29   | 0.1199          | 1.0      |
| 1.7058        | 29.67 | 30   | 0.1145          | 1.0      |
| 1.7058        | 30.67 | 31   | 0.1129          | 1.0      |
| 1.7058        | 31.67 | 32   | 0.1095          | 1.0      |
| 1.7058        | 32.67 | 33   | 0.1079          | 1.0      |
| 1.7058        | 33.67 | 34   | 0.1053          | 1.0      |
| 1.7058        | 34.67 | 35   | 0.1034          | 1.0      |
| 1.7058        | 35.67 | 36   | 0.0990          | 1.0      |
| 1.7058        | 36.67 | 37   | 0.0963          | 1.0      |
| 1.7058        | 37.67 | 38   | 0.0952          | 1.0      |
| 1.7058        | 38.67 | 39   | 0.0944          | 1.0      |
| 0.6083        | 39.67 | 40   | 0.0942          | 1.0      |


### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1