File size: 4,202 Bytes
5cfc72d 70a3e24 5cfc72d 1301041 5cfc72d 70a3e24 5cfc72d 906a6ac 1301041 5cfc72d 096f619 5cfc72d fa604e4 5cfc72d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# delivery_truck_classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1787
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.8 | 1 | 2.0794 | 0.0588 |
| No log | 1.8 | 2 | 2.0047 | 0.1176 |
| No log | 2.8 | 3 | 1.8666 | 0.1765 |
| No log | 3.8 | 4 | 1.6800 | 0.2353 |
| No log | 4.8 | 5 | 1.4622 | 0.3529 |
| No log | 5.8 | 6 | 1.2880 | 0.5882 |
| No log | 6.8 | 7 | 1.1316 | 0.8824 |
| No log | 7.8 | 8 | 0.9925 | 0.8824 |
| No log | 8.8 | 9 | 0.8822 | 0.8824 |
| No log | 9.8 | 10 | 0.7928 | 0.8824 |
| No log | 10.8 | 11 | 0.7266 | 0.8824 |
| No log | 11.8 | 12 | 0.6715 | 0.8824 |
| No log | 12.8 | 13 | 0.6238 | 0.8824 |
| No log | 13.8 | 14 | 0.5793 | 0.8824 |
| No log | 14.8 | 15 | 0.5423 | 0.8824 |
| No log | 15.8 | 16 | 0.5103 | 0.8824 |
| No log | 16.8 | 17 | 0.4865 | 0.9412 |
| No log | 17.8 | 18 | 0.4635 | 0.9412 |
| No log | 18.8 | 19 | 0.4399 | 0.9412 |
| 1.3142 | 19.8 | 20 | 0.4119 | 0.9412 |
| 1.3142 | 20.8 | 21 | 0.3843 | 0.9412 |
| 1.3142 | 21.8 | 22 | 0.3497 | 0.9412 |
| 1.3142 | 22.8 | 23 | 0.3161 | 0.9412 |
| 1.3142 | 23.8 | 24 | 0.2850 | 0.9412 |
| 1.3142 | 24.8 | 25 | 0.2581 | 0.9412 |
| 1.3142 | 25.8 | 26 | 0.2363 | 0.9412 |
| 1.3142 | 26.8 | 27 | 0.2179 | 0.9412 |
| 1.3142 | 27.8 | 28 | 0.2029 | 0.9412 |
| 1.3142 | 28.8 | 29 | 0.1903 | 0.9412 |
| 1.3142 | 29.8 | 30 | 0.1787 | 1.0 |
| 1.3142 | 30.8 | 31 | 0.1676 | 1.0 |
| 1.3142 | 31.8 | 32 | 0.1581 | 1.0 |
| 1.3142 | 32.8 | 33 | 0.1487 | 1.0 |
| 1.3142 | 33.8 | 34 | 0.1410 | 1.0 |
| 1.3142 | 34.8 | 35 | 0.1349 | 1.0 |
| 1.3142 | 35.8 | 36 | 0.1301 | 1.0 |
| 1.3142 | 36.8 | 37 | 0.1266 | 1.0 |
| 1.3142 | 37.8 | 38 | 0.1243 | 1.0 |
| 1.3142 | 38.8 | 39 | 0.1230 | 1.0 |
| 0.4316 | 39.8 | 40 | 0.1223 | 1.0 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|