JEdward7777's picture
update model card README.md
096f619
|
raw
history blame
4.24 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0600
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.4318 0.8
No log 2.0 2 1.3863 0.8
No log 3.0 3 1.2880 0.8
No log 4.0 4 1.1589 0.8
No log 5.0 5 0.9954 0.8
No log 6.0 6 0.8942 0.8
No log 7.0 7 0.8269 0.8
No log 8.0 8 0.7702 0.8
No log 9.0 9 0.7138 1.0
No log 10.0 10 0.6602 1.0
No log 11.0 11 0.6255 1.0
No log 12.0 12 0.5900 1.0
No log 13.0 13 0.5367 1.0
No log 14.0 14 0.4790 1.0
No log 15.0 15 0.4158 1.0
No log 16.0 16 0.3573 1.0
No log 17.0 17 0.2964 1.0
No log 18.0 18 0.2439 1.0
No log 19.0 19 0.2028 1.0
0.5248 20.0 20 0.1671 1.0
0.5248 21.0 21 0.1399 1.0
0.5248 22.0 22 0.1182 1.0
0.5248 23.0 23 0.1013 1.0
0.5248 24.0 24 0.0897 1.0
0.5248 25.0 25 0.0824 1.0
0.5248 26.0 26 0.0769 1.0
0.5248 27.0 27 0.0721 1.0
0.5248 28.0 28 0.0701 1.0
0.5248 29.0 29 0.0697 1.0
0.5248 30.0 30 0.0693 1.0
0.5248 31.0 31 0.0672 1.0
0.5248 32.0 32 0.0646 1.0
0.5248 33.0 33 0.0633 1.0
0.5248 34.0 34 0.0628 1.0
0.5248 35.0 35 0.0626 1.0
0.5248 36.0 36 0.0626 1.0
0.5248 37.0 37 0.0617 1.0
0.5248 38.0 38 0.0608 1.0
0.5248 39.0 39 0.0603 1.0
0.2241 40.0 40 0.0600 1.0

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1