JEdward7777's picture
update model card README.md
33e472c
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0942
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.8688 0.1818
No log 1.67 2 1.7920 0.1818
No log 2.67 3 1.6533 0.3636
No log 3.67 4 1.4775 0.4545
No log 4.67 5 1.2912 0.5909
No log 5.67 6 1.1475 0.7273
No log 6.67 7 1.0266 0.7727
No log 7.67 8 0.9196 0.7727
No log 8.67 9 0.8273 0.8182
No log 9.67 10 0.7492 0.8182
No log 10.67 11 0.6857 0.9091
No log 11.67 12 0.6369 0.9091
No log 12.67 13 0.5916 1.0
No log 13.67 14 0.5462 1.0
No log 14.67 15 0.4927 1.0
No log 15.67 16 0.4390 1.0
No log 16.67 17 0.3914 1.0
No log 17.67 18 0.3446 1.0
No log 18.67 19 0.3019 1.0
1.7058 19.67 20 0.2611 1.0
1.7058 20.67 21 0.2289 1.0
1.7058 21.67 22 0.1960 1.0
1.7058 22.67 23 0.1711 1.0
1.7058 23.67 24 0.1568 1.0
1.7058 24.67 25 0.1463 1.0
1.7058 25.67 26 0.1383 1.0
1.7058 26.67 27 0.1323 1.0
1.7058 27.67 28 0.1268 1.0
1.7058 28.67 29 0.1199 1.0
1.7058 29.67 30 0.1145 1.0
1.7058 30.67 31 0.1129 1.0
1.7058 31.67 32 0.1095 1.0
1.7058 32.67 33 0.1079 1.0
1.7058 33.67 34 0.1053 1.0
1.7058 34.67 35 0.1034 1.0
1.7058 35.67 36 0.0990 1.0
1.7058 36.67 37 0.0963 1.0
1.7058 37.67 38 0.0952 1.0
1.7058 38.67 39 0.0944 1.0
0.6083 39.67 40 0.0942 1.0

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1