JEdward7777's picture
update model card README.md
906a6ac
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1787
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 1 2.0794 0.0588
No log 1.8 2 2.0047 0.1176
No log 2.8 3 1.8666 0.1765
No log 3.8 4 1.6800 0.2353
No log 4.8 5 1.4622 0.3529
No log 5.8 6 1.2880 0.5882
No log 6.8 7 1.1316 0.8824
No log 7.8 8 0.9925 0.8824
No log 8.8 9 0.8822 0.8824
No log 9.8 10 0.7928 0.8824
No log 10.8 11 0.7266 0.8824
No log 11.8 12 0.6715 0.8824
No log 12.8 13 0.6238 0.8824
No log 13.8 14 0.5793 0.8824
No log 14.8 15 0.5423 0.8824
No log 15.8 16 0.5103 0.8824
No log 16.8 17 0.4865 0.9412
No log 17.8 18 0.4635 0.9412
No log 18.8 19 0.4399 0.9412
1.3142 19.8 20 0.4119 0.9412
1.3142 20.8 21 0.3843 0.9412
1.3142 21.8 22 0.3497 0.9412
1.3142 22.8 23 0.3161 0.9412
1.3142 23.8 24 0.2850 0.9412
1.3142 24.8 25 0.2581 0.9412
1.3142 25.8 26 0.2363 0.9412
1.3142 26.8 27 0.2179 0.9412
1.3142 27.8 28 0.2029 0.9412
1.3142 28.8 29 0.1903 0.9412
1.3142 29.8 30 0.1787 1.0
1.3142 30.8 31 0.1676 1.0
1.3142 31.8 32 0.1581 1.0
1.3142 32.8 33 0.1487 1.0
1.3142 33.8 34 0.1410 1.0
1.3142 34.8 35 0.1349 1.0
1.3142 35.8 36 0.1301 1.0
1.3142 36.8 37 0.1266 1.0
1.3142 37.8 38 0.1243 1.0
1.3142 38.8 39 0.1230 1.0
0.4316 39.8 40 0.1223 1.0

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1