JEdward7777's picture
update model card README.md
fff5a62
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9830508474576272

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0375
  • Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.94 4 1.9124 0.1864
No log 1.94 8 1.8095 0.2373
No log 2.94 12 1.6757 0.3898
No log 3.94 16 1.4906 0.5254
1.8286 4.94 20 1.2704 0.6441
1.8286 5.94 24 1.0685 0.6780
1.8286 6.94 28 0.8032 0.7458
1.8286 7.94 32 0.6309 0.7627
1.8286 8.94 36 0.4989 0.8475
0.9342 9.94 40 0.4063 0.8475
0.9342 10.94 44 0.2692 0.9153
0.9342 11.94 48 0.2736 0.8983
0.9342 12.94 52 0.2116 0.9322
0.9342 13.94 56 0.1498 0.9831
0.5151 14.94 60 0.1906 0.9153
0.5151 15.94 64 0.1698 0.9492
0.5151 16.94 68 0.1432 0.9492
0.5151 17.94 72 0.1682 0.9322
0.5151 18.94 76 0.1069 0.9831
0.4009 19.94 80 0.0821 0.9831
0.4009 20.94 84 0.0903 0.9831
0.4009 21.94 88 0.1281 0.9661
0.4009 22.94 92 0.0936 0.9831
0.4009 23.94 96 0.1059 0.9661
0.3482 24.94 100 0.1431 0.9492
0.3482 25.94 104 0.0899 0.9661
0.3482 26.94 108 0.0689 0.9661
0.3482 27.94 112 0.0751 0.9661
0.3482 28.94 116 0.0891 0.9661
0.3306 29.94 120 0.0523 0.9831
0.3306 30.94 124 0.0734 0.9831
0.3306 31.94 128 0.0746 0.9831
0.3306 32.94 132 0.0474 0.9661
0.3306 33.94 136 0.0443 0.9831
0.2871 34.94 140 0.0814 0.9831
0.2871 35.94 144 0.0691 0.9831
0.2871 36.94 148 0.0531 0.9831
0.2871 37.94 152 0.0614 0.9831
0.2871 38.94 156 0.0578 0.9831
0.2754 39.94 160 0.0520 0.9831
0.2754 40.94 164 0.0537 0.9831
0.2754 41.94 168 0.0447 0.9831
0.2754 42.94 172 0.0290 1.0
0.2754 43.94 176 0.0291 1.0
0.269 44.94 180 0.0326 0.9831
0.269 45.94 184 0.0330 0.9831
0.269 46.94 188 0.0348 0.9831
0.269 47.94 192 0.0347 0.9831
0.269 48.94 196 0.0347 0.9831
0.2615 49.94 200 0.0424 0.9831
0.2615 50.94 204 0.0451 0.9831
0.2615 51.94 208 0.0433 0.9831
0.2615 52.94 212 0.0352 0.9831
0.2615 53.94 216 0.0339 0.9831
0.2386 54.94 220 0.0339 0.9831
0.2386 55.94 224 0.0339 0.9831
0.2386 56.94 228 0.0348 0.9831
0.2386 57.94 232 0.0366 0.9831
0.2386 58.94 236 0.0374 0.9831
0.2362 59.94 240 0.0375 0.9831

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2