lewtun's picture
lewtun HF staff
Add evaluation results on the rte config and validation split of glue
8a65292
|
raw
history blame
2.45 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-rte
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE RTE
          type: glue
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6895306859205776
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: rte
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6823104693140795
            verified: true
          - name: Precision
            type: precision
            value: 0.7047619047619048
            verified: true
          - name: Recall
            type: recall
            value: 0.5648854961832062
            verified: true
          - name: AUC
            type: auc
            value: 0.7394646031580048
            verified: true
          - name: F1
            type: f1
            value: 0.6271186440677967
            verified: true
          - name: loss
            type: loss
            value: 0.7001310586929321
            verified: true

bert-base-uncased-rte

This model is a fine-tuned version of bert-base-uncased on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6972
  • Accuracy: 0.6895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.6537 0.6318
No log 2.0 312 0.6383 0.6534
No log 3.0 468 0.6972 0.6895

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1