File size: 31,458 Bytes
0c589a5
 
 
 
 
 
 
 
 
 
 
 
e6f84b7
 
 
 
0c589a5
e6f84b7
 
0c589a5
 
 
e6f84b7
 
 
0c589a5
 
e6f84b7
 
0c589a5
 
 
e6f84b7
 
 
0c589a5
 
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
 
 
 
0c589a5
e6f84b7
 
0c589a5
 
 
e6f84b7
 
0c589a5
e6f84b7
 
 
0c589a5
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
 
0c589a5
e6f84b7
 
0c589a5
 
 
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
 
0c589a5
e6f84b7
 
0c589a5
 
 
e6f84b7
 
 
 
 
0c589a5
e6f84b7
 
 
0c589a5
e6f84b7
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
 
 
 
0c589a5
e6f84b7
 
0c589a5
 
 
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
 
 
 
0c589a5
 
 
e6f84b7
 
0c589a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f84b7
0c589a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14737
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: >-
    Represent this sentence for searching relevant passages: What are some best
    practices for ensuring images in horizontal cards are visually appealing
    despite being cropped to fit a square format?
  sentences:
  - >
    Tree view

    Usage guidelines

    Horizontal scrolling: If you have a layout that doesn't allow for users to
    adjust the width of the container for a tree view, allow them to
    horizontally scroll in order to see the full depth of the hierarchy.

    Do: Allow horizontal scrolling in a fixed layout.
  - >-
    Cards

    Options

    Vertical or horizontal : Standard cards can be laid out vertically
    (components are organized in a column) or horizontally (components are
    organized in a row).


    Horizontal cards always have a square preview, and the image is cropped to
    fit inside the square. These can only be laid out in a tile grid where every
    card is the same size.
  - >-
    Alert dialog

    Behaviors

    Button group overflow: An alert dialog can have up to 3 buttons. When
    horizontal space is limited, button groups stack vertically. They should
    appear in ascending order based on importance, with the most critical action
    at the bottom.
- source_sentence: >-
    Represent this sentence for searching relevant passages: Are there any
    guidelines for the timing and smoothness of the fading effect when hovering
    over a segment in a donut chart?
  sentences:
  - >-
    Color for data visualization

    Usage guidelines

    Categorical colors are not ordered. Use these for categorical scales. Do not
    use these for ordinal, interval, or ratio scales.

    Sequential colors are ordered. Use these for ordinal and interval scales.
    It’s also acceptable to use these for ratio scales. Do not use these for
    categorical scales.

    Diverging colors are ordered. Use these for ordinal and ratio scales,
    especially when there is a meaningful middle value. These may also be used
    for interval scales. Do not use these for categorical scales.
  - >-
    Action group

    Options

    Density: Action groups come in 2 densities: regular and compact. The compact
    density retains the same font and icon sizes, but has tighter spacing. The
    action buttons also become connected for non-quiet action groups.
  - >-
    Donut chart

    Behaviors

    Hover: Hovering over a segment of a donut chart causes all other segments to
    fade back from the view. A tooltip displays the segment name, percentage of
    total, and metric value.
- source_sentence: >-
    Represent this sentence for searching relevant passages: Why is it important
    to orient the legend to match the chart whenever possible?
  sentences:
  - >-
    Breadcrumbs

    Options

    Multiline: The multiline variation places emphasis on the selected
    breadcrumb item as a page title, helping a user to more clearly identify
    their current location.
  - >-
    Cards

    Layout

    Card width: Cards are laid out in either a fluid card grid or have fixed
    widths. Most cards can be organized within a grid where the width of each
    card is fluid depending on the nature of the grid. In rare cases where cards
    can’t be laid out in a card grid, they’ll have a fixed width that is defined
    manually.
  - >-
    Legend

    Options

    Orientation: Legends can have horizontal or vertical orientation. Whenever
    possible, orient the legend to match the chart.
- source_sentence: >-
    Represent this sentence for searching relevant passages: What is the primary
    use case for radio buttons according to the Adobe Spectrum Design
    Documentation?
  sentences:
  - >+
    Radio group

    Usage guidelines

    Use radio buttons for mutually exclusive options: Radio buttons and
    [checkboxes](/page/checkbox) are not interchangeable. Radio buttons are best
    used for selecting a single option from a list of mutually exclusive
    options. Checkboxes are best used for selecting multiple options at once (or
    no options).

  - >
    Additional resources: - [Human Interface Guidelines: iOS Tab
    Bars](https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/)

    - [Human Interface Guidelines:
    Accessibility](https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/)
  - >-
    Picker

    Options

    Label position: Labels can be placed  either on top or on the side. Top
    labels are the default and are recommended because they work better with
    long copy, localization, and responsive layouts. Side labels are most useful
    when vertical space is limited.
- source_sentence: >-
    Represent this sentence for searching relevant passages: How can a designer
    balance the need for clear text links and the need for emphasized text in a
    user interface?
  sentences:
  - >-
    Meter

    Options

    Positive variant: The positive variant has a green fill to show the value.
    This can be used to represent a positive semantic value, such as when
    there’s a lot of space remaining.
  - >-
    Badge

    Options

    Size: Badges come in four different sizes: small, medium, large, and
    extra-large. The small size is the default and most frequently used option.
    Use the other sizes sparingly to create a hierarchy of importance on a page.
  - >+
    Typography

    Usage guidelines

    Don't use underlines for adding emphasis: Underlines are reserved for text
    links only. They should not be used as a way for adding emphasis to words.

datasets:
- JianLiao/spectrum-design-docs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: sds
      type: sds
    metrics:
    - type: cosine_accuracy@1
      value: 0.007462686567164179
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.015603799185888738
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.04748982360922659
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7815468113975577
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.007462686567164179
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.005201266395296246
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.009497964721845319
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07815468113975575
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.007462686567164179
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.015603799185888738
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.04748982360922659
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7815468113975577
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25440066233238845
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.10778547737502948
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.11639203259428242
      name: Cosine Map@100
license: mit
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
# Run inference
sentences = [
    'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
    "Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
    'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `sds`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0075     |
| cosine_accuracy@3   | 0.0156     |
| cosine_accuracy@5   | 0.0475     |
| cosine_accuracy@10  | 0.7815     |
| cosine_precision@1  | 0.0075     |
| cosine_precision@3  | 0.0052     |
| cosine_precision@5  | 0.0095     |
| cosine_precision@10 | 0.0782     |
| cosine_recall@1     | 0.0075     |
| cosine_recall@3     | 0.0156     |
| cosine_recall@5     | 0.0475     |
| cosine_recall@10    | 0.7815     |
| **cosine_ndcg@10**  | **0.2544** |
| cosine_mrr@10       | 0.1078     |
| cosine_map@100      | 0.1164     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### spectrum-design-docs

* Dataset: [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) at [23f5565](https://huggingface.co/datasets/JianLiao/spectrum-design-docs/tree/23f5565f9fc1cfe31d1245ca9e5368f00fcaec00)
* Size: 14,737 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 20 tokens</li><li>mean: 30.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 97.17 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                               | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project?</code> | <code>Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team.  <br><div class="well-box">Dependency chain: Spectrum DNA → Spectrum CSS</div><br><br>[GitHub repository](https://github.com/adobe/spectrum-css/)  <br>[Website](https://opensource.adobe.com/spectrum-css/)  <br>[#spectrum_css](https://adobe.slack.com/archives/C5N154FEY)</code>                                                                                     |
  | <code>Represent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI?</code>                                                               | <code>Progress circle<br>Options<br>Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).</code> |
  | <code>Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs?</code>                                         | <code>Legend<br>Behaviors<br>Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown.</code>                                                                                                                                                                                                                                                                                                                                              |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 22
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 100
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 22
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 100
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch    | Step    | Training Loss | sds_cosine_ndcg@10 |
|:--------:|:-------:|:-------------:|:------------------:|
| 1.0      | 7       | -             | 0.2255             |
| 1.48     | 10      | 0.2646        | -                  |
| 2.0      | 14      | -             | 0.2282             |
| 2.96     | 20      | 0.1412        | -                  |
| 3.0      | 21      | -             | 0.2358             |
| 4.0      | 28      | -             | 0.2397             |
| 4.32     | 30      | 0.0638        | -                  |
| 5.0      | 35      | -             | 0.2430             |
| 5.8      | 40      | 0.0425        | -                  |
| 6.0      | 42      | -             | 0.2449             |
| 7.0      | 49      | -             | 0.2462             |
| 7.16     | 50      | 0.0237        | -                  |
| 8.0      | 56      | -             | 0.2428             |
| 8.64     | 60      | 0.015         | -                  |
| 9.0      | 63      | -             | 0.2456             |
| 10.0     | 70      | 0.0082        | 0.2456             |
| 11.0     | 77      | -             | 0.2498             |
| 11.48    | 80      | 0.0052        | -                  |
| 12.0     | 84      | -             | 0.2474             |
| 12.96    | 90      | 0.0035        | -                  |
| 13.0     | 91      | -             | 0.2455             |
| 14.0     | 98      | -             | 0.2475             |
| 14.32    | 100     | 0.0022        | -                  |
| 15.0     | 105     | -             | 0.2472             |
| 15.8     | 110     | 0.002         | -                  |
| 16.0     | 112     | -             | 0.2486             |
| 17.0     | 119     | -             | 0.2506             |
| 17.16    | 120     | 0.0015        | -                  |
| 18.0     | 126     | -             | 0.2490             |
| 18.64    | 130     | 0.0013        | -                  |
| 19.0     | 133     | -             | 0.2489             |
| 20.0     | 140     | 0.0012        | 0.2491             |
| 21.0     | 147     | -             | 0.2493             |
| 21.48    | 150     | 0.0011        | -                  |
| 22.0     | 154     | -             | 0.2487             |
| 22.96    | 160     | 0.001         | -                  |
| 23.0     | 161     | -             | 0.2486             |
| 24.0     | 168     | -             | 0.2490             |
| 24.32    | 170     | 0.0008        | -                  |
| 25.0     | 175     | -             | 0.2502             |
| 25.8     | 180     | 0.0008        | -                  |
| 26.0     | 182     | -             | 0.2505             |
| 27.0     | 189     | -             | 0.2523             |
| 27.16    | 190     | 0.0008        | -                  |
| 28.0     | 196     | -             | 0.2516             |
| 28.64    | 200     | 0.0007        | -                  |
| 29.0     | 203     | -             | 0.2509             |
| 30.0     | 210     | 0.0007        | 0.2522             |
| 31.0     | 217     | -             | 0.2522             |
| 31.48    | 220     | 0.0006        | -                  |
| 32.0     | 224     | -             | 0.2534             |
| 32.96    | 230     | 0.0007        | -                  |
| 33.0     | 231     | -             | 0.2523             |
| 34.0     | 238     | -             | 0.2524             |
| 34.32    | 240     | 0.0006        | -                  |
| 35.0     | 245     | -             | 0.2518             |
| 35.8     | 250     | 0.0006        | -                  |
| 36.0     | 252     | -             | 0.2529             |
| 37.0     | 259     | -             | 0.2524             |
| 37.16    | 260     | 0.0006        | -                  |
| 38.0     | 266     | -             | 0.2530             |
| 38.64    | 270     | 0.0005        | -                  |
| 39.0     | 273     | -             | 0.2526             |
| 40.0     | 280     | 0.0006        | 0.2539             |
| 41.0     | 287     | -             | 0.2529             |
| 41.48    | 290     | 0.0005        | -                  |
| 42.0     | 294     | -             | 0.2545             |
| 42.96    | 300     | 0.0006        | -                  |
| 43.0     | 301     | -             | 0.2534             |
| 44.0     | 308     | -             | 0.2536             |
| 44.32    | 310     | 0.0004        | -                  |
| 45.0     | 315     | -             | 0.2521             |
| 45.8     | 320     | 0.0005        | -                  |
| 46.0     | 322     | -             | 0.2532             |
| 47.0     | 329     | -             | 0.2519             |
| 47.16    | 330     | 0.0005        | -                  |
| 48.0     | 336     | -             | 0.2525             |
| 48.64    | 340     | 0.0004        | -                  |
| 49.0     | 343     | -             | 0.2535             |
| 50.0     | 350     | 0.0005        | 0.2542             |
| 51.0     | 357     | -             | 0.2540             |
| 51.48    | 360     | 0.0004        | -                  |
| 52.0     | 364     | -             | 0.2542             |
| 52.96    | 370     | 0.0005        | -                  |
| 53.0     | 371     | -             | 0.2538             |
| 54.0     | 378     | -             | 0.2533             |
| 54.32    | 380     | 0.0004        | -                  |
| 55.0     | 385     | -             | 0.2544             |
| 55.8     | 390     | 0.0004        | -                  |
| 56.0     | 392     | -             | 0.2539             |
| 57.0     | 399     | -             | 0.2541             |
| 57.16    | 400     | 0.0005        | -                  |
| 58.0     | 406     | -             | 0.2532             |
| 58.64    | 410     | 0.0004        | -                  |
| 59.0     | 413     | -             | 0.2543             |
| 60.0     | 420     | 0.0004        | 0.2532             |
| 61.0     | 427     | -             | 0.2541             |
| 61.48    | 430     | 0.0004        | -                  |
| 62.0     | 434     | -             | 0.2542             |
| 62.96    | 440     | 0.0005        | -                  |
| 63.0     | 441     | -             | 0.2546             |
| 64.0     | 448     | -             | 0.2549             |
| 64.32    | 450     | 0.0003        | -                  |
| **65.0** | **455** | **-**         | **0.2557**         |
| 65.8     | 460     | 0.0004        | -                  |
| 66.0     | 462     | -             | 0.2557             |
| 67.0     | 469     | -             | 0.2539             |
| 67.16    | 470     | 0.0004        | -                  |
| 68.0     | 476     | -             | 0.2538             |
| 68.64    | 480     | 0.0004        | -                  |
| 69.0     | 483     | -             | 0.2538             |
| 70.0     | 490     | 0.0004        | 0.2542             |
| 71.0     | 497     | -             | 0.2532             |
| 71.48    | 500     | 0.0004        | -                  |
| 72.0     | 504     | -             | 0.2538             |
| 72.96    | 510     | 0.0004        | -                  |
| 73.0     | 511     | -             | 0.2545             |
| 74.0     | 518     | -             | 0.2531             |
| 74.32    | 520     | 0.0003        | -                  |
| 75.0     | 525     | -             | 0.2534             |
| 75.8     | 530     | 0.0004        | -                  |
| 76.0     | 532     | -             | 0.2541             |
| 77.0     | 539     | -             | 0.2545             |
| 77.16    | 540     | 0.0004        | -                  |
| 78.0     | 546     | -             | 0.2536             |
| 78.64    | 550     | 0.0004        | -                  |
| 79.0     | 553     | -             | 0.2545             |
| 80.0     | 560     | 0.0004        | 0.2540             |
| 81.0     | 567     | -             | 0.2545             |
| 81.48    | 570     | 0.0004        | -                  |
| 82.0     | 574     | -             | 0.2541             |
| 82.96    | 580     | 0.0004        | -                  |
| 83.0     | 581     | -             | 0.2545             |
| 84.0     | 588     | -             | 0.2538             |
| 84.32    | 590     | 0.0004        | -                  |
| 85.0     | 595     | -             | 0.2546             |
| 85.8     | 600     | 0.0004        | 0.2544             |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->