File size: 31,458 Bytes
0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 e6f84b7 0c589a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14737
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: >-
Represent this sentence for searching relevant passages: What are some best
practices for ensuring images in horizontal cards are visually appealing
despite being cropped to fit a square format?
sentences:
- >
Tree view
Usage guidelines
Horizontal scrolling: If you have a layout that doesn't allow for users to
adjust the width of the container for a tree view, allow them to
horizontally scroll in order to see the full depth of the hierarchy.
Do: Allow horizontal scrolling in a fixed layout.
- >-
Cards
Options
Vertical or horizontal : Standard cards can be laid out vertically
(components are organized in a column) or horizontally (components are
organized in a row).
Horizontal cards always have a square preview, and the image is cropped to
fit inside the square. These can only be laid out in a tile grid where every
card is the same size.
- >-
Alert dialog
Behaviors
Button group overflow: An alert dialog can have up to 3 buttons. When
horizontal space is limited, button groups stack vertically. They should
appear in ascending order based on importance, with the most critical action
at the bottom.
- source_sentence: >-
Represent this sentence for searching relevant passages: Are there any
guidelines for the timing and smoothness of the fading effect when hovering
over a segment in a donut chart?
sentences:
- >-
Color for data visualization
Usage guidelines
Categorical colors are not ordered. Use these for categorical scales. Do not
use these for ordinal, interval, or ratio scales.
Sequential colors are ordered. Use these for ordinal and interval scales.
It’s also acceptable to use these for ratio scales. Do not use these for
categorical scales.
Diverging colors are ordered. Use these for ordinal and ratio scales,
especially when there is a meaningful middle value. These may also be used
for interval scales. Do not use these for categorical scales.
- >-
Action group
Options
Density: Action groups come in 2 densities: regular and compact. The compact
density retains the same font and icon sizes, but has tighter spacing. The
action buttons also become connected for non-quiet action groups.
- >-
Donut chart
Behaviors
Hover: Hovering over a segment of a donut chart causes all other segments to
fade back from the view. A tooltip displays the segment name, percentage of
total, and metric value.
- source_sentence: >-
Represent this sentence for searching relevant passages: Why is it important
to orient the legend to match the chart whenever possible?
sentences:
- >-
Breadcrumbs
Options
Multiline: The multiline variation places emphasis on the selected
breadcrumb item as a page title, helping a user to more clearly identify
their current location.
- >-
Cards
Layout
Card width: Cards are laid out in either a fluid card grid or have fixed
widths. Most cards can be organized within a grid where the width of each
card is fluid depending on the nature of the grid. In rare cases where cards
can’t be laid out in a card grid, they’ll have a fixed width that is defined
manually.
- >-
Legend
Options
Orientation: Legends can have horizontal or vertical orientation. Whenever
possible, orient the legend to match the chart.
- source_sentence: >-
Represent this sentence for searching relevant passages: What is the primary
use case for radio buttons according to the Adobe Spectrum Design
Documentation?
sentences:
- >+
Radio group
Usage guidelines
Use radio buttons for mutually exclusive options: Radio buttons and
[checkboxes](/page/checkbox) are not interchangeable. Radio buttons are best
used for selecting a single option from a list of mutually exclusive
options. Checkboxes are best used for selecting multiple options at once (or
no options).
- >
Additional resources: - [Human Interface Guidelines: iOS Tab
Bars](https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/)
- [Human Interface Guidelines:
Accessibility](https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/)
- >-
Picker
Options
Label position: Labels can be placed either on top or on the side. Top
labels are the default and are recommended because they work better with
long copy, localization, and responsive layouts. Side labels are most useful
when vertical space is limited.
- source_sentence: >-
Represent this sentence for searching relevant passages: How can a designer
balance the need for clear text links and the need for emphasized text in a
user interface?
sentences:
- >-
Meter
Options
Positive variant: The positive variant has a green fill to show the value.
This can be used to represent a positive semantic value, such as when
there’s a lot of space remaining.
- >-
Badge
Options
Size: Badges come in four different sizes: small, medium, large, and
extra-large. The small size is the default and most frequently used option.
Use the other sizes sparingly to create a hierarchy of importance on a page.
- >+
Typography
Usage guidelines
Don't use underlines for adding emphasis: Underlines are reserved for text
links only. They should not be used as a way for adding emphasis to words.
datasets:
- JianLiao/spectrum-design-docs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: sds
type: sds
metrics:
- type: cosine_accuracy@1
value: 0.007462686567164179
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.015603799185888738
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.04748982360922659
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7815468113975577
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.007462686567164179
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.005201266395296246
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.009497964721845319
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07815468113975575
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.007462686567164179
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.015603799185888738
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04748982360922659
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7815468113975577
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25440066233238845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10778547737502948
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.11639203259428242
name: Cosine Map@100
license: mit
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
"Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `sds`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0075 |
| cosine_accuracy@3 | 0.0156 |
| cosine_accuracy@5 | 0.0475 |
| cosine_accuracy@10 | 0.7815 |
| cosine_precision@1 | 0.0075 |
| cosine_precision@3 | 0.0052 |
| cosine_precision@5 | 0.0095 |
| cosine_precision@10 | 0.0782 |
| cosine_recall@1 | 0.0075 |
| cosine_recall@3 | 0.0156 |
| cosine_recall@5 | 0.0475 |
| cosine_recall@10 | 0.7815 |
| **cosine_ndcg@10** | **0.2544** |
| cosine_mrr@10 | 0.1078 |
| cosine_map@100 | 0.1164 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### spectrum-design-docs
* Dataset: [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) at [23f5565](https://huggingface.co/datasets/JianLiao/spectrum-design-docs/tree/23f5565f9fc1cfe31d1245ca9e5368f00fcaec00)
* Size: 14,737 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 20 tokens</li><li>mean: 30.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 97.17 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project?</code> | <code>Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team. <br><div class="well-box">Dependency chain: Spectrum DNA → Spectrum CSS</div><br><br>[GitHub repository](https://github.com/adobe/spectrum-css/) <br>[Website](https://opensource.adobe.com/spectrum-css/) <br>[#spectrum_css](https://adobe.slack.com/archives/C5N154FEY)</code> |
| <code>Represent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI?</code> | <code>Progress circle<br>Options<br>Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).</code> |
| <code>Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs?</code> | <code>Legend<br>Behaviors<br>Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 22
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 100
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 22
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 100
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sds_cosine_ndcg@10 |
|:--------:|:-------:|:-------------:|:------------------:|
| 1.0 | 7 | - | 0.2255 |
| 1.48 | 10 | 0.2646 | - |
| 2.0 | 14 | - | 0.2282 |
| 2.96 | 20 | 0.1412 | - |
| 3.0 | 21 | - | 0.2358 |
| 4.0 | 28 | - | 0.2397 |
| 4.32 | 30 | 0.0638 | - |
| 5.0 | 35 | - | 0.2430 |
| 5.8 | 40 | 0.0425 | - |
| 6.0 | 42 | - | 0.2449 |
| 7.0 | 49 | - | 0.2462 |
| 7.16 | 50 | 0.0237 | - |
| 8.0 | 56 | - | 0.2428 |
| 8.64 | 60 | 0.015 | - |
| 9.0 | 63 | - | 0.2456 |
| 10.0 | 70 | 0.0082 | 0.2456 |
| 11.0 | 77 | - | 0.2498 |
| 11.48 | 80 | 0.0052 | - |
| 12.0 | 84 | - | 0.2474 |
| 12.96 | 90 | 0.0035 | - |
| 13.0 | 91 | - | 0.2455 |
| 14.0 | 98 | - | 0.2475 |
| 14.32 | 100 | 0.0022 | - |
| 15.0 | 105 | - | 0.2472 |
| 15.8 | 110 | 0.002 | - |
| 16.0 | 112 | - | 0.2486 |
| 17.0 | 119 | - | 0.2506 |
| 17.16 | 120 | 0.0015 | - |
| 18.0 | 126 | - | 0.2490 |
| 18.64 | 130 | 0.0013 | - |
| 19.0 | 133 | - | 0.2489 |
| 20.0 | 140 | 0.0012 | 0.2491 |
| 21.0 | 147 | - | 0.2493 |
| 21.48 | 150 | 0.0011 | - |
| 22.0 | 154 | - | 0.2487 |
| 22.96 | 160 | 0.001 | - |
| 23.0 | 161 | - | 0.2486 |
| 24.0 | 168 | - | 0.2490 |
| 24.32 | 170 | 0.0008 | - |
| 25.0 | 175 | - | 0.2502 |
| 25.8 | 180 | 0.0008 | - |
| 26.0 | 182 | - | 0.2505 |
| 27.0 | 189 | - | 0.2523 |
| 27.16 | 190 | 0.0008 | - |
| 28.0 | 196 | - | 0.2516 |
| 28.64 | 200 | 0.0007 | - |
| 29.0 | 203 | - | 0.2509 |
| 30.0 | 210 | 0.0007 | 0.2522 |
| 31.0 | 217 | - | 0.2522 |
| 31.48 | 220 | 0.0006 | - |
| 32.0 | 224 | - | 0.2534 |
| 32.96 | 230 | 0.0007 | - |
| 33.0 | 231 | - | 0.2523 |
| 34.0 | 238 | - | 0.2524 |
| 34.32 | 240 | 0.0006 | - |
| 35.0 | 245 | - | 0.2518 |
| 35.8 | 250 | 0.0006 | - |
| 36.0 | 252 | - | 0.2529 |
| 37.0 | 259 | - | 0.2524 |
| 37.16 | 260 | 0.0006 | - |
| 38.0 | 266 | - | 0.2530 |
| 38.64 | 270 | 0.0005 | - |
| 39.0 | 273 | - | 0.2526 |
| 40.0 | 280 | 0.0006 | 0.2539 |
| 41.0 | 287 | - | 0.2529 |
| 41.48 | 290 | 0.0005 | - |
| 42.0 | 294 | - | 0.2545 |
| 42.96 | 300 | 0.0006 | - |
| 43.0 | 301 | - | 0.2534 |
| 44.0 | 308 | - | 0.2536 |
| 44.32 | 310 | 0.0004 | - |
| 45.0 | 315 | - | 0.2521 |
| 45.8 | 320 | 0.0005 | - |
| 46.0 | 322 | - | 0.2532 |
| 47.0 | 329 | - | 0.2519 |
| 47.16 | 330 | 0.0005 | - |
| 48.0 | 336 | - | 0.2525 |
| 48.64 | 340 | 0.0004 | - |
| 49.0 | 343 | - | 0.2535 |
| 50.0 | 350 | 0.0005 | 0.2542 |
| 51.0 | 357 | - | 0.2540 |
| 51.48 | 360 | 0.0004 | - |
| 52.0 | 364 | - | 0.2542 |
| 52.96 | 370 | 0.0005 | - |
| 53.0 | 371 | - | 0.2538 |
| 54.0 | 378 | - | 0.2533 |
| 54.32 | 380 | 0.0004 | - |
| 55.0 | 385 | - | 0.2544 |
| 55.8 | 390 | 0.0004 | - |
| 56.0 | 392 | - | 0.2539 |
| 57.0 | 399 | - | 0.2541 |
| 57.16 | 400 | 0.0005 | - |
| 58.0 | 406 | - | 0.2532 |
| 58.64 | 410 | 0.0004 | - |
| 59.0 | 413 | - | 0.2543 |
| 60.0 | 420 | 0.0004 | 0.2532 |
| 61.0 | 427 | - | 0.2541 |
| 61.48 | 430 | 0.0004 | - |
| 62.0 | 434 | - | 0.2542 |
| 62.96 | 440 | 0.0005 | - |
| 63.0 | 441 | - | 0.2546 |
| 64.0 | 448 | - | 0.2549 |
| 64.32 | 450 | 0.0003 | - |
| **65.0** | **455** | **-** | **0.2557** |
| 65.8 | 460 | 0.0004 | - |
| 66.0 | 462 | - | 0.2557 |
| 67.0 | 469 | - | 0.2539 |
| 67.16 | 470 | 0.0004 | - |
| 68.0 | 476 | - | 0.2538 |
| 68.64 | 480 | 0.0004 | - |
| 69.0 | 483 | - | 0.2538 |
| 70.0 | 490 | 0.0004 | 0.2542 |
| 71.0 | 497 | - | 0.2532 |
| 71.48 | 500 | 0.0004 | - |
| 72.0 | 504 | - | 0.2538 |
| 72.96 | 510 | 0.0004 | - |
| 73.0 | 511 | - | 0.2545 |
| 74.0 | 518 | - | 0.2531 |
| 74.32 | 520 | 0.0003 | - |
| 75.0 | 525 | - | 0.2534 |
| 75.8 | 530 | 0.0004 | - |
| 76.0 | 532 | - | 0.2541 |
| 77.0 | 539 | - | 0.2545 |
| 77.16 | 540 | 0.0004 | - |
| 78.0 | 546 | - | 0.2536 |
| 78.64 | 550 | 0.0004 | - |
| 79.0 | 553 | - | 0.2545 |
| 80.0 | 560 | 0.0004 | 0.2540 |
| 81.0 | 567 | - | 0.2545 |
| 81.48 | 570 | 0.0004 | - |
| 82.0 | 574 | - | 0.2541 |
| 82.96 | 580 | 0.0004 | - |
| 83.0 | 581 | - | 0.2545 |
| 84.0 | 588 | - | 0.2538 |
| 84.32 | 590 | 0.0004 | - |
| 85.0 | 595 | - | 0.2546 |
| 85.8 | 600 | 0.0004 | 0.2544 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |