Jobaula's picture
End of training
2f8b2e3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: Whisper medium nan-tw common voice
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder nan-tw
          type: audiofolder
          config: nan-tw
          split: test
          args: nan-tw
        metrics:
          - name: Wer
            type: wer
            value: 0.9615384615384616

Whisper medium nan-tw common voice

This model is a fine-tuned version of openai/whisper-medium on the audiofolder nan-tw dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0141
  • Model Preparation Time: 0.0121
  • Wer: 0.9615
  • Cer: 0.9524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
0.97 0.2 1000 0.7356 0.0121 38.1731 38.4762
0.3044 1.0388 2000 0.3099 0.0121 23.4615 23.9048
0.3108 1.2388 3000 0.1153 0.0121 7.5 7.7143
0.0544 2.0776 4000 0.0295 0.0121 2.3077 2.2857
0.0678 2.2776 5000 0.0141 0.0121 0.9615 0.9524

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3