dyu-fr-t5-small_v7 / README.md
JuliusFx's picture
Training in progress epoch 99
1068ef1
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_keras_callback
model-index:
  - name: JuliusFx/dyu-fr-t5-small_v7
    results: []

JuliusFx/dyu-fr-t5-small_v7

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.9053
  • Validation Loss: 3.0844
  • Epoch: 99

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
3.6620 3.3803 0
3.4472 3.2921 1
3.3525 3.2231 2
3.2837 3.1862 3
3.2322 3.1474 4
3.1837 3.1283 5
3.1428 3.0978 6
3.1095 3.0848 7
3.0765 3.0664 8
3.0453 3.0565 9
3.0144 3.0408 10
2.9884 3.0344 11
2.9633 3.0285 12
2.9377 3.0228 13
2.9175 3.0158 14
2.8979 3.0310 15
2.8737 3.0306 16
2.8575 3.0122 17
2.8343 3.0232 18
2.8178 3.0135 19
2.7992 3.0038 20
2.7791 3.0221 21
2.7636 3.0123 22
2.7430 3.0083 23
2.7286 3.0186 24
2.7083 2.9942 25
2.6964 2.9911 26
2.6792 2.9891 27
2.6580 3.0056 28
2.6414 3.0048 29
2.6329 3.0040 30
2.6213 3.0035 31
2.6042 3.0061 32
2.5913 3.0095 33
2.5720 3.0202 34
2.5590 3.0204 35
2.5429 3.0304 36
2.5352 3.0128 37
2.5162 2.9989 38
2.5086 3.0094 39
2.4949 3.0048 40
2.4799 3.0187 41
2.4703 3.0199 42
2.4537 3.0340 43
2.4468 3.0233 44
2.4317 3.0171 45
2.4195 3.0274 46
2.4079 3.0265 47
2.3948 3.0173 48
2.3852 3.0194 49
2.3728 3.0275 50
2.3631 3.0147 51
2.3525 3.0338 52
2.3401 3.0444 53
2.3303 3.0556 54
2.3145 3.0440 55
2.3057 3.0500 56
2.2951 3.0496 57
2.2830 3.0497 58
2.2690 3.0461 59
2.2646 3.0373 60
2.2503 3.0343 61
2.2457 3.0589 62
2.2343 3.0538 63
2.2285 3.0434 64
2.2146 3.0410 65
2.2048 3.0339 66
2.1913 3.0507 67
2.1803 3.0459 68
2.1747 3.0487 69
2.1641 3.0344 70
2.1547 3.0440 71
2.1461 3.0655 72
2.1403 3.0383 73
2.1267 3.0239 74
2.1161 3.0183 75
2.1010 3.0555 76
2.0980 3.0412 77
2.0894 3.0400 78
2.0806 3.0389 79
2.0744 3.0377 80
2.0591 3.0596 81
2.0525 3.0449 82
2.0465 3.0532 83
2.0385 3.0465 84
2.0232 3.0374 85
2.0231 3.0280 86
2.0089 3.0506 87
2.0031 3.0629 88
1.9959 3.0440 89
1.9854 3.0669 90
1.9776 3.0718 91
1.9698 3.0657 92
1.9591 3.0650 93
1.9529 3.0599 94
1.9483 3.0726 95
1.9429 3.0682 96
1.9271 3.0618 97
1.9208 3.0857 98
1.9053 3.0844 99

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2