dyu-fr-t5-small_v7 / README.md
JuliusFx's picture
Training in progress epoch 99
1068ef1
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: JuliusFx/dyu-fr-t5-small_v7
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# JuliusFx/dyu-fr-t5-small_v7
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.9053
- Validation Loss: 3.0844
- Epoch: 99
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.6620 | 3.3803 | 0 |
| 3.4472 | 3.2921 | 1 |
| 3.3525 | 3.2231 | 2 |
| 3.2837 | 3.1862 | 3 |
| 3.2322 | 3.1474 | 4 |
| 3.1837 | 3.1283 | 5 |
| 3.1428 | 3.0978 | 6 |
| 3.1095 | 3.0848 | 7 |
| 3.0765 | 3.0664 | 8 |
| 3.0453 | 3.0565 | 9 |
| 3.0144 | 3.0408 | 10 |
| 2.9884 | 3.0344 | 11 |
| 2.9633 | 3.0285 | 12 |
| 2.9377 | 3.0228 | 13 |
| 2.9175 | 3.0158 | 14 |
| 2.8979 | 3.0310 | 15 |
| 2.8737 | 3.0306 | 16 |
| 2.8575 | 3.0122 | 17 |
| 2.8343 | 3.0232 | 18 |
| 2.8178 | 3.0135 | 19 |
| 2.7992 | 3.0038 | 20 |
| 2.7791 | 3.0221 | 21 |
| 2.7636 | 3.0123 | 22 |
| 2.7430 | 3.0083 | 23 |
| 2.7286 | 3.0186 | 24 |
| 2.7083 | 2.9942 | 25 |
| 2.6964 | 2.9911 | 26 |
| 2.6792 | 2.9891 | 27 |
| 2.6580 | 3.0056 | 28 |
| 2.6414 | 3.0048 | 29 |
| 2.6329 | 3.0040 | 30 |
| 2.6213 | 3.0035 | 31 |
| 2.6042 | 3.0061 | 32 |
| 2.5913 | 3.0095 | 33 |
| 2.5720 | 3.0202 | 34 |
| 2.5590 | 3.0204 | 35 |
| 2.5429 | 3.0304 | 36 |
| 2.5352 | 3.0128 | 37 |
| 2.5162 | 2.9989 | 38 |
| 2.5086 | 3.0094 | 39 |
| 2.4949 | 3.0048 | 40 |
| 2.4799 | 3.0187 | 41 |
| 2.4703 | 3.0199 | 42 |
| 2.4537 | 3.0340 | 43 |
| 2.4468 | 3.0233 | 44 |
| 2.4317 | 3.0171 | 45 |
| 2.4195 | 3.0274 | 46 |
| 2.4079 | 3.0265 | 47 |
| 2.3948 | 3.0173 | 48 |
| 2.3852 | 3.0194 | 49 |
| 2.3728 | 3.0275 | 50 |
| 2.3631 | 3.0147 | 51 |
| 2.3525 | 3.0338 | 52 |
| 2.3401 | 3.0444 | 53 |
| 2.3303 | 3.0556 | 54 |
| 2.3145 | 3.0440 | 55 |
| 2.3057 | 3.0500 | 56 |
| 2.2951 | 3.0496 | 57 |
| 2.2830 | 3.0497 | 58 |
| 2.2690 | 3.0461 | 59 |
| 2.2646 | 3.0373 | 60 |
| 2.2503 | 3.0343 | 61 |
| 2.2457 | 3.0589 | 62 |
| 2.2343 | 3.0538 | 63 |
| 2.2285 | 3.0434 | 64 |
| 2.2146 | 3.0410 | 65 |
| 2.2048 | 3.0339 | 66 |
| 2.1913 | 3.0507 | 67 |
| 2.1803 | 3.0459 | 68 |
| 2.1747 | 3.0487 | 69 |
| 2.1641 | 3.0344 | 70 |
| 2.1547 | 3.0440 | 71 |
| 2.1461 | 3.0655 | 72 |
| 2.1403 | 3.0383 | 73 |
| 2.1267 | 3.0239 | 74 |
| 2.1161 | 3.0183 | 75 |
| 2.1010 | 3.0555 | 76 |
| 2.0980 | 3.0412 | 77 |
| 2.0894 | 3.0400 | 78 |
| 2.0806 | 3.0389 | 79 |
| 2.0744 | 3.0377 | 80 |
| 2.0591 | 3.0596 | 81 |
| 2.0525 | 3.0449 | 82 |
| 2.0465 | 3.0532 | 83 |
| 2.0385 | 3.0465 | 84 |
| 2.0232 | 3.0374 | 85 |
| 2.0231 | 3.0280 | 86 |
| 2.0089 | 3.0506 | 87 |
| 2.0031 | 3.0629 | 88 |
| 1.9959 | 3.0440 | 89 |
| 1.9854 | 3.0669 | 90 |
| 1.9776 | 3.0718 | 91 |
| 1.9698 | 3.0657 | 92 |
| 1.9591 | 3.0650 | 93 |
| 1.9529 | 3.0599 | 94 |
| 1.9483 | 3.0726 | 95 |
| 1.9429 | 3.0682 | 96 |
| 1.9271 | 3.0618 | 97 |
| 1.9208 | 3.0857 | 98 |
| 1.9053 | 3.0844 | 99 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2