dyu-fr-t5-small_v8 / README.md
JuliusFx's picture
Training in progress epoch 99
02ba244
|
raw
history blame
5.37 kB
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_keras_callback
model-index:
- name: JuliusFx/dyu-fr-t5-small_v8
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# JuliusFx/dyu-fr-t5-small_v8
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.8793
- Validation Loss: 2.9071
- Epoch: 99
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.1481 | 3.2663 | 0 |
| 3.0205 | 3.2024 | 1 |
| 2.9712 | 3.1559 | 2 |
| 2.9209 | 3.1465 | 3 |
| 2.8848 | 3.1125 | 4 |
| 2.8512 | 3.1014 | 5 |
| 2.8239 | 3.0771 | 6 |
| 2.7965 | 3.0641 | 7 |
| 2.7743 | 3.0431 | 8 |
| 2.7505 | 3.0327 | 9 |
| 2.7325 | 3.0072 | 10 |
| 2.7153 | 3.0060 | 11 |
| 2.6904 | 2.9950 | 12 |
| 2.6750 | 2.9895 | 13 |
| 2.6554 | 2.9700 | 14 |
| 2.6400 | 2.9632 | 15 |
| 2.6220 | 2.9534 | 16 |
| 2.6059 | 2.9505 | 17 |
| 2.5913 | 2.9536 | 18 |
| 2.5779 | 2.9485 | 19 |
| 2.5624 | 2.9349 | 20 |
| 2.5469 | 2.9307 | 21 |
| 2.5341 | 2.9224 | 22 |
| 2.5223 | 2.9114 | 23 |
| 2.5093 | 2.8996 | 24 |
| 2.4995 | 2.9065 | 25 |
| 2.4855 | 2.8974 | 26 |
| 2.4706 | 2.8926 | 27 |
| 2.4589 | 2.9075 | 28 |
| 2.4521 | 2.8921 | 29 |
| 2.4380 | 2.9055 | 30 |
| 2.4243 | 2.8930 | 31 |
| 2.4131 | 2.8871 | 32 |
| 2.4065 | 2.8894 | 33 |
| 2.3911 | 2.8890 | 34 |
| 2.3833 | 2.8757 | 35 |
| 2.3724 | 2.8778 | 36 |
| 2.3628 | 2.8874 | 37 |
| 2.3556 | 2.8687 | 38 |
| 2.3441 | 2.8653 | 39 |
| 2.3321 | 2.8794 | 40 |
| 2.3203 | 2.8827 | 41 |
| 2.3118 | 2.8778 | 42 |
| 2.3027 | 2.8955 | 43 |
| 2.2903 | 2.8778 | 44 |
| 2.2821 | 2.8751 | 45 |
| 2.2760 | 2.8655 | 46 |
| 2.2592 | 2.8763 | 47 |
| 2.2534 | 2.8643 | 48 |
| 2.2466 | 2.8716 | 49 |
| 2.2363 | 2.8728 | 50 |
| 2.2279 | 2.8688 | 51 |
| 2.2225 | 2.8822 | 52 |
| 2.2133 | 2.8690 | 53 |
| 2.2025 | 2.8551 | 54 |
| 2.1937 | 2.8605 | 55 |
| 2.1863 | 2.8441 | 56 |
| 2.1776 | 2.8576 | 57 |
| 2.1732 | 2.8435 | 58 |
| 2.1640 | 2.8448 | 59 |
| 2.1530 | 2.8422 | 60 |
| 2.1438 | 2.8640 | 61 |
| 2.1360 | 2.8648 | 62 |
| 2.1302 | 2.8689 | 63 |
| 2.1213 | 2.8787 | 64 |
| 2.1170 | 2.8816 | 65 |
| 2.1016 | 2.8655 | 66 |
| 2.0986 | 2.8713 | 67 |
| 2.0892 | 2.8776 | 68 |
| 2.0876 | 2.8912 | 69 |
| 2.0722 | 2.8901 | 70 |
| 2.0678 | 2.8549 | 71 |
| 2.0607 | 2.8883 | 72 |
| 2.0544 | 2.8681 | 73 |
| 2.0481 | 2.8637 | 74 |
| 2.0358 | 2.8739 | 75 |
| 2.0347 | 2.8705 | 76 |
| 2.0232 | 2.8724 | 77 |
| 2.0225 | 2.8619 | 78 |
| 2.0096 | 2.8687 | 79 |
| 2.0038 | 2.8561 | 80 |
| 1.9969 | 2.8560 | 81 |
| 1.9873 | 2.8755 | 82 |
| 1.9880 | 2.8745 | 83 |
| 1.9758 | 2.8648 | 84 |
| 1.9711 | 2.8808 | 85 |
| 1.9635 | 2.8721 | 86 |
| 1.9512 | 2.8739 | 87 |
| 1.9526 | 2.8836 | 88 |
| 1.9442 | 2.8862 | 89 |
| 1.9364 | 2.8969 | 90 |
| 1.9311 | 2.8948 | 91 |
| 1.9234 | 2.9150 | 92 |
| 1.9154 | 2.9048 | 93 |
| 1.9057 | 2.9040 | 94 |
| 1.9057 | 2.9043 | 95 |
| 1.8981 | 2.8895 | 96 |
| 1.8923 | 2.9031 | 97 |
| 1.8797 | 2.9221 | 98 |
| 1.8793 | 2.9071 | 99 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2