KasuleTrevor's picture
End of training
07ad222 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-lg-cv-130hr-v1
    results: []

Visualize in Weights & Biases

wav2vec2-large-xls-r-300m-lg-cv-130hr-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4019
  • Wer: 0.2092
  • Cer: 0.0456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7325 1.0 5194 0.2760 0.3441 0.0731
0.2056 2.0 10388 0.2507 0.2835 0.0629
0.1744 3.0 15582 0.2414 0.2721 0.0605
0.155 4.0 20776 0.2359 0.2618 0.0584
0.143 5.0 25970 0.2354 0.2577 0.0575
0.131 6.0 31164 0.2400 0.2551 0.0570
0.1208 7.0 36358 0.2460 0.2482 0.0555
0.1102 8.0 41552 0.2553 0.2439 0.0548
0.1001 9.0 46746 0.2441 0.2455 0.0547
0.0898 10.0 51940 0.2463 0.2423 0.0543
0.0795 11.0 57134 0.2577 0.2400 0.0528
0.0701 12.0 62328 0.2677 0.2374 0.0522
0.0609 13.0 67522 0.2741 0.2405 0.0527
0.0538 14.0 72716 0.2933 0.2396 0.0523
0.0471 15.0 77910 0.3096 0.2352 0.0517
0.0416 16.0 83104 0.3165 0.2311 0.0503
0.0374 17.0 88298 0.3294 0.2328 0.0505
0.0335 18.0 93492 0.3414 0.2325 0.0501
0.0301 19.0 98686 0.3379 0.2255 0.0487
0.0276 20.0 103880 0.3578 0.2220 0.0482
0.0253 21.0 109074 0.3701 0.2181 0.0476
0.0236 22.0 114268 0.3769 0.2181 0.0474
0.0217 23.0 119462 0.3808 0.2155 0.0470
0.0204 24.0 124656 0.3917 0.2124 0.0464
0.0193 25.0 129850 0.3963 0.2110 0.0459
0.0184 26.0 135044 0.3956 0.2111 0.0458
0.0174 27.0 140238 0.4046 0.2109 0.0459
0.0174 28.0 145432 0.3997 0.2096 0.0457
0.0169 29.0 150626 0.4014 0.2093 0.0456
0.0171 30.0 155820 0.4019 0.2092 0.0456

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.2.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1