metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Chapman hits winning double as Blue Jays complete sweep of Red Sox with
3-2 victory
- text: Opinion | The Election No One Seems to Want Is Coming Right at Us
- text: How to watch The Real Housewives of Miami new episode free Jan. 10
- text: Vitamin Sea Brewing set to open 2nd brewery and taproom in Mass.
- text: Opinion | When the World Feels Dark, Seek Out Delight
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7060702875399361
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 9 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
3 |
|
6 |
|
2 |
|
0 |
|
7 |
|
8 |
|
4 |
|
1 |
|
5 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7061 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Kevinger/setfit-hub-report")
# Run inference
preds = model("Opinion | When the World Feels Dark, Seek Out Delight")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 7.2993 | 21 |
Label | Training Sample Count |
---|---|
0 | 16 |
1 | 16 |
2 | 16 |
3 | 16 |
4 | 9 |
5 | 16 |
6 | 16 |
7 | 16 |
8 | 16 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0010 | 1 | 0.3619 | - |
0.0481 | 50 | 0.097 | - |
0.0962 | 100 | 0.0327 | - |
0.1442 | 150 | 0.0044 | - |
0.1923 | 200 | 0.0013 | - |
0.2404 | 250 | 0.0011 | - |
0.2885 | 300 | 0.001 | - |
0.3365 | 350 | 0.0008 | - |
0.3846 | 400 | 0.001 | - |
0.4327 | 450 | 0.0006 | - |
0.4808 | 500 | 0.0008 | - |
0.5288 | 550 | 0.0005 | - |
0.5769 | 600 | 0.0012 | - |
0.625 | 650 | 0.0005 | - |
0.6731 | 700 | 0.0006 | - |
0.7212 | 750 | 0.0004 | - |
0.7692 | 800 | 0.0005 | - |
0.8173 | 850 | 0.0005 | - |
0.8654 | 900 | 0.0006 | - |
0.9135 | 950 | 0.0014 | - |
0.9615 | 1000 | 0.0006 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}