setfit-hub-report / README.md
Kevinger's picture
Add SetFit model
1370528 verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      Chapman hits winning double as Blue Jays complete sweep of Red Sox with
      3-2 victory
  - text: Opinion | The Election No One Seems to Want Is Coming Right at Us
  - text: How to watch The Real Housewives of Miami new episode free Jan. 10
  - text: Vitamin Sea Brewing set to open 2nd brewery and taproom in Mass.
  - text: Opinion | When the World Feels Dark, Seek Out Delight
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.7060702875399361
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
3
  • 'A Reinvented True Detective Plays It Cool'
  • "It's owl season in Massachusetts. Here's how to spot them"
  • 'Taylor Swift class at Harvard: Professor needs to hire more teaching assistants'
6
  • 'Springfield Mayor Domenic Sarno tests positive for COVID-19'
  • 'How to Take Care of Your Skin in the Fall and Winter'
  • 'Subbing plant-based milk for dairy options is a healthy decision'
2
  • 'Mattel Has a New Cherokee Barbie. Not Everyone Is Happy About It.'
  • 'Who Is Alan Garber, Harvards Interim President?'
  • 'Springfield Marine training in Japan near Mount Fuji (Photos)'
0
  • 'Heres which Northampton businesses might soon get all-alcohol liquor licenses'
  • 'People in Business: Jan. 15, 2024'
  • 'Come Home With Memories, Not a Shocking Phone Bill'
7
  • '3 Patriots vs. Chiefs predictions'
  • 'Tuskegee vs. Alabama State How to watch college football'
  • 'WMass Boys Basketball Season Stats Leaders: Who leads the region by class?'
8
  • 'Biting Cold Sweeping U.S. Hits the South With an Unfamiliar Freeze'
  • 'Some Sunday storms and sun - Boston News, Weather, Sports'
  • 'More snow on the way in Mass. on Tuesday with slippery evening commute'
4
  • 'title'
  • 'This sentence is label'
  • 'This sentence is label'
1
  • 'Two cars crash through former Boston Market in Saugus'
  • 'U.S. Naval Officer Who Helped China Is Sentenced to 2 Years in Prison'
  • 'American Airlines flight attendant arrested after allegedly filming teenage girl in bathroom on flight to Boston - Boston News, Weather, Sports'
5
  • 'Opinion

Evaluation

Metrics

Label Accuracy
all 0.7061

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Kevinger/setfit-hub-report")
# Run inference
preds = model("Opinion | When the World Feels Dark, Seek Out Delight")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 7.2993 21
Label Training Sample Count
0 16
1 16
2 16
3 16
4 9
5 16
6 16
7 16
8 16

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0010 1 0.3619 -
0.0481 50 0.097 -
0.0962 100 0.0327 -
0.1442 150 0.0044 -
0.1923 200 0.0013 -
0.2404 250 0.0011 -
0.2885 300 0.001 -
0.3365 350 0.0008 -
0.3846 400 0.001 -
0.4327 450 0.0006 -
0.4808 500 0.0008 -
0.5288 550 0.0005 -
0.5769 600 0.0012 -
0.625 650 0.0005 -
0.6731 700 0.0006 -
0.7212 750 0.0004 -
0.7692 800 0.0005 -
0.8173 850 0.0005 -
0.8654 900 0.0006 -
0.9135 950 0.0014 -
0.9615 1000 0.0006 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}