Kudod's picture
End of training
0e54e71 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
model-index:
  - name: xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1
    results: []

xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Ho Hoảng thời gian Háng trừu tượng Hông tin ctt Hụ cấp Hứ Iấy tờ Iền cụ thể Iền trừu tượng à số thuế à đơn Ình thức làm việc Ông Ương Ị trí Ố công Ố giờ Ố điểm Ố đơn Ợt Ỷ lệ Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 147 0.5842 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} {'precision': 0.19148936170212766, 'recall': 0.14285714285714285, 'f1': 0.16363636363636364, 'number': 63} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.07079646017699115, 'recall': 0.0975609756097561, 'f1': 0.08205128205128205, 'number': 82} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 54} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} {'precision': 0.6938775510204082, 'recall': 0.5551020408163265, 'f1': 0.6167800453514739, 'number': 245} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 50} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} 0.3825 0.2361 0.2920 0.8515

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1